\left. \begin{array} { l } { ( 2 x - x ^ { 2 } ) ^ { 2 } + 3 x ^ { 3 } ( 1 - x ) - 2 x ^ { 2 } ( 2 - x ^ { 2 } - \frac { 1 } { 2 } x ) } \\ { ( - \frac { 1 } { 2 } ) ^ { 2 } ( 2 x - y ) ( 2 x + y ) - ( x - \frac { 1 } { 2 } y ) ( x + \frac { 1 } { 2 } y ) } \end{array} \right.
Sort
0,\ 0
Evaluate
0,\ 0
Graph
Share
Copied to clipboard
sort(4x^{2}-4xx^{2}+\left(x^{2}\right)^{2}+3x^{3}\left(1-x\right)-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),\left(-\frac{1}{2}\right)^{2}\left(2x-y\right)\left(2x+y\right)-\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right))
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-x^{2}\right)^{2}.
sort(4x^{2}-4x^{3}+\left(x^{2}\right)^{2}+3x^{3}\left(1-x\right)-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),\left(-\frac{1}{2}\right)^{2}\left(2x-y\right)\left(2x+y\right)-\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right))
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
sort(4x^{2}-4x^{3}+x^{4}+3x^{3}\left(1-x\right)-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),\left(-\frac{1}{2}\right)^{2}\left(2x-y\right)\left(2x+y\right)-\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right))
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
sort(4x^{2}-4x^{3}+x^{4}+3x^{3}-3x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),\left(-\frac{1}{2}\right)^{2}\left(2x-y\right)\left(2x+y\right)-\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right))
Use the distributive property to multiply 3x^{3} by 1-x.
sort(4x^{2}-x^{3}+x^{4}-3x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),\left(-\frac{1}{2}\right)^{2}\left(2x-y\right)\left(2x+y\right)-\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right))
Combine -4x^{3} and 3x^{3} to get -x^{3}.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),\left(-\frac{1}{2}\right)^{2}\left(2x-y\right)\left(2x+y\right)-\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right))
Combine x^{4} and -3x^{4} to get -2x^{4}.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),\frac{1}{4}\left(2x-y\right)\left(2x+y\right)-\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right))
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),\left(\frac{1}{2}x-\frac{1}{4}y\right)\left(2x+y\right)-\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right))
Use the distributive property to multiply \frac{1}{4} by 2x-y.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),x^{2}-\frac{1}{4}y^{2}-\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right))
Use the distributive property to multiply \frac{1}{2}x-\frac{1}{4}y by 2x+y and combine like terms.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),x^{2}-\frac{1}{4}y^{2}-\left(x^{2}-\left(\frac{1}{2}y\right)^{2}\right))
Consider \left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),x^{2}-\frac{1}{4}y^{2}-\left(x^{2}-\left(\frac{1}{2}\right)^{2}y^{2}\right))
Expand \left(\frac{1}{2}y\right)^{2}.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),x^{2}-\frac{1}{4}y^{2}-\left(x^{2}-\frac{1}{4}y^{2}\right))
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),x^{2}-\frac{1}{4}y^{2}-x^{2}+\frac{1}{4}y^{2})
To find the opposite of x^{2}-\frac{1}{4}y^{2}, find the opposite of each term.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),-\frac{1}{4}y^{2}+\frac{1}{4}y^{2})
Combine x^{2} and -x^{2} to get 0.
sort(4x^{2}-x^{3}-2x^{4}-2x^{2}\left(2-x^{2}-\frac{1}{2}x\right),0)
Combine -\frac{1}{4}y^{2} and \frac{1}{4}y^{2} to get 0.
sort(4x^{2}-x^{3}-2x^{4}-4x^{2}+2x^{4}+x^{3},0)
Use the distributive property to multiply -2x^{2} by 2-x^{2}-\frac{1}{2}x.
sort(-x^{3}-2x^{4}+2x^{4}+x^{3},0)
Combine 4x^{2} and -4x^{2} to get 0.
sort(-x^{3}+x^{3},0)
Combine -2x^{4} and 2x^{4} to get 0.
sort(0,0)
Combine -x^{3} and x^{3} to get 0.
0,0
The list values are already in order.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}