\left. \begin{array} { l } { ( 15 \frac { 1 } { 2 } - 2 \frac { 3 } { 8 } ) - ( 5 \frac { 5 } { 6 } + 6 \frac { 3 } { 4 } ) + ( 10 \frac { 2 } { 3 } - 5 \frac { 5 } { 8 } ) } \\ { ( 20 - 19 \frac { 3 } { 4 } ) + ( 17 \frac { 3 } { 4 } - 17 ) + ( 2 \frac { 1 } { 3 } - \frac { 17 } { 4 } ) } \end{array} \right.
Sort
-\frac{11}{12},\frac{67}{12}
Evaluate
\frac{67}{12},\ -\frac{11}{12}
Share
Copied to clipboard
sort(\frac{30+1}{2}-\frac{2\times 8+3}{8}-\left(\frac{5\times 6+5}{6}+\frac{6\times 4+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Multiply 15 and 2 to get 30.
sort(\frac{31}{2}-\frac{2\times 8+3}{8}-\left(\frac{5\times 6+5}{6}+\frac{6\times 4+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 30 and 1 to get 31.
sort(\frac{31}{2}-\frac{16+3}{8}-\left(\frac{5\times 6+5}{6}+\frac{6\times 4+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Multiply 2 and 8 to get 16.
sort(\frac{31}{2}-\frac{19}{8}-\left(\frac{5\times 6+5}{6}+\frac{6\times 4+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 16 and 3 to get 19.
sort(\frac{124}{8}-\frac{19}{8}-\left(\frac{5\times 6+5}{6}+\frac{6\times 4+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Least common multiple of 2 and 8 is 8. Convert \frac{31}{2} and \frac{19}{8} to fractions with denominator 8.
sort(\frac{124-19}{8}-\left(\frac{5\times 6+5}{6}+\frac{6\times 4+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Since \frac{124}{8} and \frac{19}{8} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{105}{8}-\left(\frac{5\times 6+5}{6}+\frac{6\times 4+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Subtract 19 from 124 to get 105.
sort(\frac{105}{8}-\left(\frac{30+5}{6}+\frac{6\times 4+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Multiply 5 and 6 to get 30.
sort(\frac{105}{8}-\left(\frac{35}{6}+\frac{6\times 4+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 30 and 5 to get 35.
sort(\frac{105}{8}-\left(\frac{35}{6}+\frac{24+3}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Multiply 6 and 4 to get 24.
sort(\frac{105}{8}-\left(\frac{35}{6}+\frac{27}{4}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 24 and 3 to get 27.
sort(\frac{105}{8}-\left(\frac{70}{12}+\frac{81}{12}\right)+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Least common multiple of 6 and 4 is 12. Convert \frac{35}{6} and \frac{27}{4} to fractions with denominator 12.
sort(\frac{105}{8}-\frac{70+81}{12}+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Since \frac{70}{12} and \frac{81}{12} have the same denominator, add them by adding their numerators.
sort(\frac{105}{8}-\frac{151}{12}+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 70 and 81 to get 151.
sort(\frac{315}{24}-\frac{302}{24}+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Least common multiple of 8 and 12 is 24. Convert \frac{105}{8} and \frac{151}{12} to fractions with denominator 24.
sort(\frac{315-302}{24}+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Since \frac{315}{24} and \frac{302}{24} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{13}{24}+\frac{10\times 3+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Subtract 302 from 315 to get 13.
sort(\frac{13}{24}+\frac{30+2}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Multiply 10 and 3 to get 30.
sort(\frac{13}{24}+\frac{32}{3}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 30 and 2 to get 32.
sort(\frac{13}{24}+\frac{256}{24}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Least common multiple of 24 and 3 is 24. Convert \frac{13}{24} and \frac{32}{3} to fractions with denominator 24.
sort(\frac{13+256}{24}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Since \frac{13}{24} and \frac{256}{24} have the same denominator, add them by adding their numerators.
sort(\frac{269}{24}-\frac{5\times 8+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 13 and 256 to get 269.
sort(\frac{269}{24}-\frac{40+5}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Multiply 5 and 8 to get 40.
sort(\frac{269}{24}-\frac{45}{8},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 40 and 5 to get 45.
sort(\frac{269}{24}-\frac{135}{24},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Least common multiple of 24 and 8 is 24. Convert \frac{269}{24} and \frac{45}{8} to fractions with denominator 24.
sort(\frac{269-135}{24},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Since \frac{269}{24} and \frac{135}{24} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{134}{24},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Subtract 135 from 269 to get 134.
sort(\frac{67}{12},20-\frac{19\times 4+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Reduce the fraction \frac{134}{24} to lowest terms by extracting and canceling out 2.
sort(\frac{67}{12},20-\frac{76+3}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Multiply 19 and 4 to get 76.
sort(\frac{67}{12},20-\frac{79}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 76 and 3 to get 79.
sort(\frac{67}{12},\frac{80}{4}-\frac{79}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Convert 20 to fraction \frac{80}{4}.
sort(\frac{67}{12},\frac{80-79}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Since \frac{80}{4} and \frac{79}{4} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{67}{12},\frac{1}{4}+\frac{17\times 4+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Subtract 79 from 80 to get 1.
sort(\frac{67}{12},\frac{1}{4}+\frac{68+3}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Multiply 17 and 4 to get 68.
sort(\frac{67}{12},\frac{1}{4}+\frac{71}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 68 and 3 to get 71.
sort(\frac{67}{12},\frac{1+71}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Since \frac{1}{4} and \frac{71}{4} have the same denominator, add them by adding their numerators.
sort(\frac{67}{12},\frac{72}{4}-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Add 1 and 71 to get 72.
sort(\frac{67}{12},18-17+\frac{2\times 3+1}{3}-\frac{17}{4})
Divide 72 by 4 to get 18.
sort(\frac{67}{12},1+\frac{2\times 3+1}{3}-\frac{17}{4})
Subtract 17 from 18 to get 1.
sort(\frac{67}{12},1+\frac{6+1}{3}-\frac{17}{4})
Multiply 2 and 3 to get 6.
sort(\frac{67}{12},1+\frac{7}{3}-\frac{17}{4})
Add 6 and 1 to get 7.
sort(\frac{67}{12},\frac{3}{3}+\frac{7}{3}-\frac{17}{4})
Convert 1 to fraction \frac{3}{3}.
sort(\frac{67}{12},\frac{3+7}{3}-\frac{17}{4})
Since \frac{3}{3} and \frac{7}{3} have the same denominator, add them by adding their numerators.
sort(\frac{67}{12},\frac{10}{3}-\frac{17}{4})
Add 3 and 7 to get 10.
sort(\frac{67}{12},\frac{40}{12}-\frac{51}{12})
Least common multiple of 3 and 4 is 12. Convert \frac{10}{3} and \frac{17}{4} to fractions with denominator 12.
sort(\frac{67}{12},\frac{40-51}{12})
Since \frac{40}{12} and \frac{51}{12} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{67}{12},-\frac{11}{12})
Subtract 51 from 40 to get -11.
\frac{67}{12}
To sort the list, start from a single element \frac{67}{12}.
-\frac{11}{12},\frac{67}{12}
Insert -\frac{11}{12} to the appropriate location in the new list.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}