\left. \begin{array} { l } { ( 1 + 4 + 3 ) - ( 8 + 2 ) + ( 11 + 6 ) : 17 = 151 } \\ { 18 \cdot 6 : 27 - [ 26 - ( 81 : 9 \cdot 2 : 3 + 3 \cdot 6 ) ] = [ 2 ] } \end{array} \right.
Verify
false
Share
Copied to clipboard
5+3-\left(8+2\right)+\frac{11+6}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Add 1 and 4 to get 5.
8-\left(8+2\right)+\frac{11+6}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Add 5 and 3 to get 8.
8-10+\frac{11+6}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Add 8 and 2 to get 10.
-2+\frac{11+6}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Subtract 10 from 8 to get -2.
-2+\frac{17}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Add 11 and 6 to get 17.
-2+1=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Divide 17 by 17 to get 1.
-1=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Add -2 and 1 to get -1.
\text{false}\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Compare -1 and 151.
\text{false}\text{ and }\frac{108}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Multiply 18 and 6 to get 108.
\text{false}\text{ and }4-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Divide 108 by 27 to get 4.
\text{false}\text{ and }4-\left(26-\left(\frac{9\times 2}{3}+3\times 6\right)\right)=2
Divide 81 by 9 to get 9.
\text{false}\text{ and }4-\left(26-\left(\frac{18}{3}+3\times 6\right)\right)=2
Multiply 9 and 2 to get 18.
\text{false}\text{ and }4-\left(26-\left(6+3\times 6\right)\right)=2
Divide 18 by 3 to get 6.
\text{false}\text{ and }4-\left(26-\left(6+18\right)\right)=2
Multiply 3 and 6 to get 18.
\text{false}\text{ and }4-\left(26-24\right)=2
Add 6 and 18 to get 24.
\text{false}\text{ and }4-2=2
Subtract 24 from 26 to get 2.
\text{false}\text{ and }2=2
Subtract 2 from 4 to get 2.
\text{false}\text{ and }\text{true}
Compare 2 and 2.
\text{false}
The conjunction of \text{false} and \text{true} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}