Solve for x_1, y, x_2
y=4
x_{1}=3
x_{2}=-5
Graph
Share
Copied to clipboard
4x_{1}+2y-20=0 4x_{2}-4+6y=0 x_{1}-x_{2}=2y
Multiply each equation by the least common multiple of denominators in it. Simplify.
x_{1}-x_{2}=2y 4x_{2}-4+6y=0 4x_{1}+2y-20=0
Reorder the equations.
x_{1}=x_{2}+2y
Solve x_{1}-x_{2}=2y for x_{1}.
4\left(x_{2}+2y\right)+2y-20=0
Substitute x_{2}+2y for x_{1} in the equation 4x_{1}+2y-20=0.
y=\frac{2}{3}-\frac{2}{3}x_{2} x_{2}=5-\frac{5}{2}y
Solve the second equation for y and the third equation for x_{2}.
x_{2}=5-\frac{5}{2}\left(\frac{2}{3}-\frac{2}{3}x_{2}\right)
Substitute \frac{2}{3}-\frac{2}{3}x_{2} for y in the equation x_{2}=5-\frac{5}{2}y.
x_{2}=-5
Solve x_{2}=5-\frac{5}{2}\left(\frac{2}{3}-\frac{2}{3}x_{2}\right) for x_{2}.
y=\frac{2}{3}-\frac{2}{3}\left(-5\right)
Substitute -5 for x_{2} in the equation y=\frac{2}{3}-\frac{2}{3}x_{2}.
y=4
Calculate y from y=\frac{2}{3}-\frac{2}{3}\left(-5\right).
x_{1}=-5+2\times 4
Substitute 4 for y and -5 for x_{2} in the equation x_{1}=x_{2}+2y.
x_{1}=3
Calculate x_{1} from x_{1}=-5+2\times 4.
x_{1}=3 y=4 x_{2}=-5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}