Evaluate
0
Factor
0
Share
Copied to clipboard
\left(-m\right)^{2}+12\left(-m\right)+36-\left(m-6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-m+6\right)^{2}.
m^{2}+12\left(-m\right)+36-\left(m-6\right)^{2}
Calculate -m to the power of 2 and get m^{2}.
m^{2}+12\left(-m\right)+36-\left(m^{2}-12m+36\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-6\right)^{2}.
m^{2}+12\left(-m\right)+36-m^{2}+12m-36
To find the opposite of m^{2}-12m+36, find the opposite of each term.
12\left(-m\right)+36+12m-36
Combine m^{2} and -m^{2} to get 0.
12\left(-m\right)+12m
Subtract 36 from 36 to get 0.
-12m+12m
Multiply 12 and -1 to get -12.
0
Combine -12m and 12m to get 0.
0
The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
2\left(-m+6\right)
Consider -2m+12. Factor out 2.
0
Rewrite the complete factored expression. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}