Evaluate
\frac{13}{9}\approx 1.444444444
Factor
\frac{13}{3 ^ {2}} = 1\frac{4}{9} = 1.4444444444444444
Share
Copied to clipboard
\frac{-\frac{12}{45}+\frac{25}{45}}{-\frac{26}{45}}-\frac{12}{-\frac{2\times 13+1}{13}}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Least common multiple of 15 and 9 is 45. Convert -\frac{4}{15} and \frac{5}{9} to fractions with denominator 45.
\frac{\frac{-12+25}{45}}{-\frac{26}{45}}-\frac{12}{-\frac{2\times 13+1}{13}}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Since -\frac{12}{45} and \frac{25}{45} have the same denominator, add them by adding their numerators.
\frac{\frac{13}{45}}{-\frac{26}{45}}-\frac{12}{-\frac{2\times 13+1}{13}}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Add -12 and 25 to get 13.
\frac{13}{45}\left(-\frac{45}{26}\right)-\frac{12}{-\frac{2\times 13+1}{13}}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Divide \frac{13}{45} by -\frac{26}{45} by multiplying \frac{13}{45} by the reciprocal of -\frac{26}{45}.
\frac{13\left(-45\right)}{45\times 26}-\frac{12}{-\frac{2\times 13+1}{13}}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Multiply \frac{13}{45} times -\frac{45}{26} by multiplying numerator times numerator and denominator times denominator.
\frac{-585}{1170}-\frac{12}{-\frac{2\times 13+1}{13}}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Do the multiplications in the fraction \frac{13\left(-45\right)}{45\times 26}.
-\frac{1}{2}-\frac{12}{-\frac{2\times 13+1}{13}}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Reduce the fraction \frac{-585}{1170} to lowest terms by extracting and canceling out 585.
-\frac{1}{2}-\frac{12}{-\frac{26+1}{13}}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Multiply 2 and 13 to get 26.
-\frac{1}{2}-\frac{12}{-\frac{27}{13}}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Add 26 and 1 to get 27.
-\frac{1}{2}-12\left(-\frac{13}{27}\right)+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Divide 12 by -\frac{27}{13} by multiplying 12 by the reciprocal of -\frac{27}{13}.
-\frac{1}{2}-\frac{12\left(-13\right)}{27}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Express 12\left(-\frac{13}{27}\right) as a single fraction.
-\frac{1}{2}-\frac{-156}{27}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Multiply 12 and -13 to get -156.
-\frac{1}{2}-\left(-\frac{52}{9}\right)+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Reduce the fraction \frac{-156}{27} to lowest terms by extracting and canceling out 3.
-\frac{1}{2}+\frac{52}{9}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
The opposite of -\frac{52}{9} is \frac{52}{9}.
-\frac{9}{18}+\frac{104}{18}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Least common multiple of 2 and 9 is 18. Convert -\frac{1}{2} and \frac{52}{9} to fractions with denominator 18.
\frac{-9+104}{18}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Since -\frac{9}{18} and \frac{104}{18} have the same denominator, add them by adding their numerators.
\frac{95}{18}+\frac{\frac{1\times 4+1}{4}}{-\frac{15}{46}}
Add -9 and 104 to get 95.
\frac{95}{18}+\frac{\left(1\times 4+1\right)\times 46}{4\left(-15\right)}
Divide \frac{1\times 4+1}{4} by -\frac{15}{46} by multiplying \frac{1\times 4+1}{4} by the reciprocal of -\frac{15}{46}.
\frac{95}{18}+\frac{23\left(1+4\right)}{-15\times 2}
Cancel out 2 in both numerator and denominator.
\frac{95}{18}+\frac{23\times 5}{-15\times 2}
Add 1 and 4 to get 5.
\frac{95}{18}+\frac{115}{-15\times 2}
Multiply 23 and 5 to get 115.
\frac{95}{18}+\frac{115}{-30}
Multiply -15 and 2 to get -30.
\frac{95}{18}-\frac{23}{6}
Reduce the fraction \frac{115}{-30} to lowest terms by extracting and canceling out 5.
\frac{95}{18}-\frac{69}{18}
Least common multiple of 18 and 6 is 18. Convert \frac{95}{18} and \frac{23}{6} to fractions with denominator 18.
\frac{95-69}{18}
Since \frac{95}{18} and \frac{69}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{18}
Subtract 69 from 95 to get 26.
\frac{13}{9}
Reduce the fraction \frac{26}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}