Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4-\left(\sqrt{3}+2\right)\left(2-\sqrt{3}\right)+\left(2-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+2\right)^{2}.
3+4\sqrt{3}+4-\left(\sqrt{3}+2\right)\left(2-\sqrt{3}\right)+\left(2-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\left(\sqrt{3}+2\right)\left(2-\sqrt{3}\right)+\left(2-\sqrt{3}\right)^{2}
Add 3 and 4 to get 7.
7+4\sqrt{3}-\left(4-\left(\sqrt{3}\right)^{2}\right)+\left(2-\sqrt{3}\right)^{2}
Consider \left(\sqrt{3}+2\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
7+4\sqrt{3}-\left(4-3\right)+\left(2-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-1+\left(2-\sqrt{3}\right)^{2}
Subtract 3 from 4 to get 1.
6+4\sqrt{3}+\left(2-\sqrt{3}\right)^{2}
Subtract 1 from 7 to get 6.
6+4\sqrt{3}+4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
6+4\sqrt{3}+4-4\sqrt{3}+3
The square of \sqrt{3} is 3.
6+4\sqrt{3}+7-4\sqrt{3}
Add 4 and 3 to get 7.
13+4\sqrt{3}-4\sqrt{3}
Add 6 and 7 to get 13.
13
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.