Solve for x
x=\frac{1}{2}=0.5
x=1
Graph
Share
Copied to clipboard
12\left(\frac{x}{2}-1\right)^{2}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Multiply both sides of the equation by 12, the least common multiple of 3,12,4,6.
12\left(\left(\frac{x}{2}\right)^{2}-2\times \frac{x}{2}+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{x}{2}-1\right)^{2}.
12\left(\frac{x^{2}}{2^{2}}-2\times \frac{x}{2}+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
12\left(\frac{x^{2}}{2^{2}}+\frac{-2x}{2}+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Express -2\times \frac{x}{2} as a single fraction.
12\left(\frac{x^{2}}{2^{2}}-x+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Cancel out 2 and 2.
12\left(\frac{x^{2}}{2^{2}}+\frac{\left(-x+1\right)\times 2^{2}}{2^{2}}\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+1 times \frac{2^{2}}{2^{2}}.
12\times \frac{x^{2}+\left(-x+1\right)\times 2^{2}}{2^{2}}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Since \frac{x^{2}}{2^{2}} and \frac{\left(-x+1\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
12\times \frac{x^{2}-4x+4}{2^{2}}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Do the multiplications in x^{2}+\left(-x+1\right)\times 2^{2}.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Express 12\times \frac{x^{2}-4x+4}{2^{2}} as a single fraction.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+8\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Multiply 4 and 2 to get 8.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+\left(16x-8\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Use the distributive property to multiply 8 by 2x-1.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+32x^{2}-8+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Use the distributive property to multiply 16x-8 by 2x+1 and combine like terms.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+32x^{2}+3=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Add -8 and 11 to get 3.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+\frac{\left(32x^{2}+3\right)\times 2^{2}}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 32x^{2}+3 times \frac{2^{2}}{2^{2}}.
\frac{12\left(x^{2}-4x+4\right)+\left(32x^{2}+3\right)\times 2^{2}}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Since \frac{12\left(x^{2}-4x+4\right)}{2^{2}} and \frac{\left(32x^{2}+3\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{12x^{2}-48x+48+128x^{2}+12}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Do the multiplications in 12\left(x^{2}-4x+4\right)+\left(32x^{2}+3\right)\times 2^{2}.
\frac{140x^{2}-48x+60}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Combine like terms in 12x^{2}-48x+48+128x^{2}+12.
\frac{140x^{2}-48x+60}{2^{2}}=\left(3x+6\right)\left(3x+1\right)-2x\left(3-4x\right)
Use the distributive property to multiply 3 by x+2.
\frac{140x^{2}-48x+60}{2^{2}}=9x^{2}+21x+6-2x\left(3-4x\right)
Use the distributive property to multiply 3x+6 by 3x+1 and combine like terms.
\frac{140x^{2}-48x+60}{2^{2}}=9x^{2}+21x+6-6x+8x^{2}
Use the distributive property to multiply -2x by 3-4x.
\frac{140x^{2}-48x+60}{2^{2}}=9x^{2}+15x+6+8x^{2}
Combine 21x and -6x to get 15x.
\frac{140x^{2}-48x+60}{2^{2}}=17x^{2}+15x+6
Combine 9x^{2} and 8x^{2} to get 17x^{2}.
\frac{140x^{2}-48x+60}{4}=17x^{2}+15x+6
Calculate 2 to the power of 2 and get 4.
35x^{2}-12x+15=17x^{2}+15x+6
Divide each term of 140x^{2}-48x+60 by 4 to get 35x^{2}-12x+15.
35x^{2}-12x+15-17x^{2}=15x+6
Subtract 17x^{2} from both sides.
18x^{2}-12x+15=15x+6
Combine 35x^{2} and -17x^{2} to get 18x^{2}.
18x^{2}-12x+15-15x=6
Subtract 15x from both sides.
18x^{2}-27x+15=6
Combine -12x and -15x to get -27x.
18x^{2}-27x+15-6=0
Subtract 6 from both sides.
18x^{2}-27x+9=0
Subtract 6 from 15 to get 9.
2x^{2}-3x+1=0
Divide both sides by 9.
a+b=-3 ab=2\times 1=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
a=-2 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(2x^{2}-2x\right)+\left(-x+1\right)
Rewrite 2x^{2}-3x+1 as \left(2x^{2}-2x\right)+\left(-x+1\right).
2x\left(x-1\right)-\left(x-1\right)
Factor out 2x in the first and -1 in the second group.
\left(x-1\right)\left(2x-1\right)
Factor out common term x-1 by using distributive property.
x=1 x=\frac{1}{2}
To find equation solutions, solve x-1=0 and 2x-1=0.
12\left(\frac{x}{2}-1\right)^{2}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Multiply both sides of the equation by 12, the least common multiple of 3,12,4,6.
12\left(\left(\frac{x}{2}\right)^{2}-2\times \frac{x}{2}+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{x}{2}-1\right)^{2}.
12\left(\frac{x^{2}}{2^{2}}-2\times \frac{x}{2}+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
12\left(\frac{x^{2}}{2^{2}}+\frac{-2x}{2}+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Express -2\times \frac{x}{2} as a single fraction.
12\left(\frac{x^{2}}{2^{2}}-x+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Cancel out 2 and 2.
12\left(\frac{x^{2}}{2^{2}}+\frac{\left(-x+1\right)\times 2^{2}}{2^{2}}\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+1 times \frac{2^{2}}{2^{2}}.
12\times \frac{x^{2}+\left(-x+1\right)\times 2^{2}}{2^{2}}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Since \frac{x^{2}}{2^{2}} and \frac{\left(-x+1\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
12\times \frac{x^{2}-4x+4}{2^{2}}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Do the multiplications in x^{2}+\left(-x+1\right)\times 2^{2}.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Express 12\times \frac{x^{2}-4x+4}{2^{2}} as a single fraction.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+8\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Multiply 4 and 2 to get 8.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+\left(16x-8\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Use the distributive property to multiply 8 by 2x-1.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+32x^{2}-8+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Use the distributive property to multiply 16x-8 by 2x+1 and combine like terms.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+32x^{2}+3=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Add -8 and 11 to get 3.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+\frac{\left(32x^{2}+3\right)\times 2^{2}}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 32x^{2}+3 times \frac{2^{2}}{2^{2}}.
\frac{12\left(x^{2}-4x+4\right)+\left(32x^{2}+3\right)\times 2^{2}}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Since \frac{12\left(x^{2}-4x+4\right)}{2^{2}} and \frac{\left(32x^{2}+3\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{12x^{2}-48x+48+128x^{2}+12}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Do the multiplications in 12\left(x^{2}-4x+4\right)+\left(32x^{2}+3\right)\times 2^{2}.
\frac{140x^{2}-48x+60}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Combine like terms in 12x^{2}-48x+48+128x^{2}+12.
\frac{140x^{2}-48x+60}{2^{2}}=\left(3x+6\right)\left(3x+1\right)-2x\left(3-4x\right)
Use the distributive property to multiply 3 by x+2.
\frac{140x^{2}-48x+60}{2^{2}}=9x^{2}+21x+6-2x\left(3-4x\right)
Use the distributive property to multiply 3x+6 by 3x+1 and combine like terms.
\frac{140x^{2}-48x+60}{2^{2}}=9x^{2}+21x+6-6x+8x^{2}
Use the distributive property to multiply -2x by 3-4x.
\frac{140x^{2}-48x+60}{2^{2}}=9x^{2}+15x+6+8x^{2}
Combine 21x and -6x to get 15x.
\frac{140x^{2}-48x+60}{2^{2}}=17x^{2}+15x+6
Combine 9x^{2} and 8x^{2} to get 17x^{2}.
\frac{140x^{2}-48x+60}{4}=17x^{2}+15x+6
Calculate 2 to the power of 2 and get 4.
35x^{2}-12x+15=17x^{2}+15x+6
Divide each term of 140x^{2}-48x+60 by 4 to get 35x^{2}-12x+15.
35x^{2}-12x+15-17x^{2}=15x+6
Subtract 17x^{2} from both sides.
18x^{2}-12x+15=15x+6
Combine 35x^{2} and -17x^{2} to get 18x^{2}.
18x^{2}-12x+15-15x=6
Subtract 15x from both sides.
18x^{2}-27x+15=6
Combine -12x and -15x to get -27x.
18x^{2}-27x+15-6=0
Subtract 6 from both sides.
18x^{2}-27x+9=0
Subtract 6 from 15 to get 9.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 18\times 9}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, -27 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-27\right)±\sqrt{729-4\times 18\times 9}}{2\times 18}
Square -27.
x=\frac{-\left(-27\right)±\sqrt{729-72\times 9}}{2\times 18}
Multiply -4 times 18.
x=\frac{-\left(-27\right)±\sqrt{729-648}}{2\times 18}
Multiply -72 times 9.
x=\frac{-\left(-27\right)±\sqrt{81}}{2\times 18}
Add 729 to -648.
x=\frac{-\left(-27\right)±9}{2\times 18}
Take the square root of 81.
x=\frac{27±9}{2\times 18}
The opposite of -27 is 27.
x=\frac{27±9}{36}
Multiply 2 times 18.
x=\frac{36}{36}
Now solve the equation x=\frac{27±9}{36} when ± is plus. Add 27 to 9.
x=1
Divide 36 by 36.
x=\frac{18}{36}
Now solve the equation x=\frac{27±9}{36} when ± is minus. Subtract 9 from 27.
x=\frac{1}{2}
Reduce the fraction \frac{18}{36} to lowest terms by extracting and canceling out 18.
x=1 x=\frac{1}{2}
The equation is now solved.
12\left(\frac{x}{2}-1\right)^{2}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Multiply both sides of the equation by 12, the least common multiple of 3,12,4,6.
12\left(\left(\frac{x}{2}\right)^{2}-2\times \frac{x}{2}+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{x}{2}-1\right)^{2}.
12\left(\frac{x^{2}}{2^{2}}-2\times \frac{x}{2}+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
12\left(\frac{x^{2}}{2^{2}}+\frac{-2x}{2}+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Express -2\times \frac{x}{2} as a single fraction.
12\left(\frac{x^{2}}{2^{2}}-x+1\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Cancel out 2 and 2.
12\left(\frac{x^{2}}{2^{2}}+\frac{\left(-x+1\right)\times 2^{2}}{2^{2}}\right)+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+1 times \frac{2^{2}}{2^{2}}.
12\times \frac{x^{2}+\left(-x+1\right)\times 2^{2}}{2^{2}}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Since \frac{x^{2}}{2^{2}} and \frac{\left(-x+1\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
12\times \frac{x^{2}-4x+4}{2^{2}}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Do the multiplications in x^{2}+\left(-x+1\right)\times 2^{2}.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+4\times 2\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Express 12\times \frac{x^{2}-4x+4}{2^{2}} as a single fraction.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+8\left(2x-1\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Multiply 4 and 2 to get 8.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+\left(16x-8\right)\left(2x+1\right)+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Use the distributive property to multiply 8 by 2x-1.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+32x^{2}-8+11=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Use the distributive property to multiply 16x-8 by 2x+1 and combine like terms.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+32x^{2}+3=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Add -8 and 11 to get 3.
\frac{12\left(x^{2}-4x+4\right)}{2^{2}}+\frac{\left(32x^{2}+3\right)\times 2^{2}}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 32x^{2}+3 times \frac{2^{2}}{2^{2}}.
\frac{12\left(x^{2}-4x+4\right)+\left(32x^{2}+3\right)\times 2^{2}}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Since \frac{12\left(x^{2}-4x+4\right)}{2^{2}} and \frac{\left(32x^{2}+3\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{12x^{2}-48x+48+128x^{2}+12}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Do the multiplications in 12\left(x^{2}-4x+4\right)+\left(32x^{2}+3\right)\times 2^{2}.
\frac{140x^{2}-48x+60}{2^{2}}=3\left(x+2\right)\left(3x+1\right)-2x\left(3-4x\right)
Combine like terms in 12x^{2}-48x+48+128x^{2}+12.
\frac{140x^{2}-48x+60}{2^{2}}=\left(3x+6\right)\left(3x+1\right)-2x\left(3-4x\right)
Use the distributive property to multiply 3 by x+2.
\frac{140x^{2}-48x+60}{2^{2}}=9x^{2}+21x+6-2x\left(3-4x\right)
Use the distributive property to multiply 3x+6 by 3x+1 and combine like terms.
\frac{140x^{2}-48x+60}{2^{2}}=9x^{2}+21x+6-6x+8x^{2}
Use the distributive property to multiply -2x by 3-4x.
\frac{140x^{2}-48x+60}{2^{2}}=9x^{2}+15x+6+8x^{2}
Combine 21x and -6x to get 15x.
\frac{140x^{2}-48x+60}{2^{2}}=17x^{2}+15x+6
Combine 9x^{2} and 8x^{2} to get 17x^{2}.
\frac{140x^{2}-48x+60}{4}=17x^{2}+15x+6
Calculate 2 to the power of 2 and get 4.
35x^{2}-12x+15=17x^{2}+15x+6
Divide each term of 140x^{2}-48x+60 by 4 to get 35x^{2}-12x+15.
35x^{2}-12x+15-17x^{2}=15x+6
Subtract 17x^{2} from both sides.
18x^{2}-12x+15=15x+6
Combine 35x^{2} and -17x^{2} to get 18x^{2}.
18x^{2}-12x+15-15x=6
Subtract 15x from both sides.
18x^{2}-27x+15=6
Combine -12x and -15x to get -27x.
18x^{2}-27x=6-15
Subtract 15 from both sides.
18x^{2}-27x=-9
Subtract 15 from 6 to get -9.
\frac{18x^{2}-27x}{18}=-\frac{9}{18}
Divide both sides by 18.
x^{2}+\left(-\frac{27}{18}\right)x=-\frac{9}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}-\frac{3}{2}x=-\frac{9}{18}
Reduce the fraction \frac{-27}{18} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{3}{2}x=-\frac{1}{2}
Reduce the fraction \frac{-9}{18} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
Add -\frac{1}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{1}{4} x-\frac{3}{4}=-\frac{1}{4}
Simplify.
x=1 x=\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}