Evaluate
2\left(\sqrt{2}+\sqrt{3}-11\right)\approx -15.70747126
Share
Copied to clipboard
3-21+\sqrt{8}-\left(\sqrt{3}-1\right)^{2}
Calculate \frac{1}{3} to the power of -1 and get 3.
-18+\sqrt{8}-\left(\sqrt{3}-1\right)^{2}
Subtract 21 from 3 to get -18.
-18+2\sqrt{2}-\left(\sqrt{3}-1\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-18+2\sqrt{2}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
-18+2\sqrt{2}-\left(3-2\sqrt{3}+1\right)
The square of \sqrt{3} is 3.
-18+2\sqrt{2}-\left(4-2\sqrt{3}\right)
Add 3 and 1 to get 4.
-18+2\sqrt{2}-4+2\sqrt{3}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
-22+2\sqrt{2}+2\sqrt{3}
Subtract 4 from -18 to get -22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}