Evaluate
6-18\sqrt{2}\approx -19.455844123
Factor
6 {(1 - 3 \sqrt{2})} = -19.455844123
Share
Copied to clipboard
\left(\frac{1}{3}\times 3\sqrt{3}-\sqrt{24}-3\sqrt{\frac{2}{3}}\right)\sqrt{12}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\left(\sqrt{3}-\sqrt{24}-3\sqrt{\frac{2}{3}}\right)\sqrt{12}
Cancel out 3 and 3.
\left(\sqrt{3}-2\sqrt{6}-3\sqrt{\frac{2}{3}}\right)\sqrt{12}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\left(\sqrt{3}-2\sqrt{6}-3\times \frac{\sqrt{2}}{\sqrt{3}}\right)\sqrt{12}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\left(\sqrt{3}-2\sqrt{6}-3\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)\sqrt{12}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\sqrt{3}-2\sqrt{6}-3\times \frac{\sqrt{2}\sqrt{3}}{3}\right)\sqrt{12}
The square of \sqrt{3} is 3.
\left(\sqrt{3}-2\sqrt{6}-3\times \frac{\sqrt{6}}{3}\right)\sqrt{12}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(\sqrt{3}-2\sqrt{6}-\sqrt{6}\right)\sqrt{12}
Cancel out 3 and 3.
\left(\sqrt{3}-3\sqrt{6}\right)\sqrt{12}
Combine -2\sqrt{6} and -\sqrt{6} to get -3\sqrt{6}.
\left(\sqrt{3}-3\sqrt{6}\right)\times 2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(2\sqrt{3}-6\sqrt{6}\right)\sqrt{3}
Use the distributive property to multiply \sqrt{3}-3\sqrt{6} by 2.
2\left(\sqrt{3}\right)^{2}-6\sqrt{6}\sqrt{3}
Use the distributive property to multiply 2\sqrt{3}-6\sqrt{6} by \sqrt{3}.
2\times 3-6\sqrt{6}\sqrt{3}
The square of \sqrt{3} is 3.
6-6\sqrt{6}\sqrt{3}
Multiply 2 and 3 to get 6.
6-6\sqrt{3}\sqrt{2}\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
6-6\times 3\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
6-18\sqrt{2}
Multiply -6 and 3 to get -18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}