Skip to main content
Sort
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

https://math.stackexchange.com/questions/2541322/how-to-prove-this-equation-with-bessel-function-and-laguerre-function

Share

sort(\frac{1}{4}+\frac{1}{\frac{1}{2}}+1-\frac{1}{2}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
sort(\frac{1}{4}+1\times 2+1-\frac{1}{2}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
sort(\frac{1}{4}+2+1-\frac{1}{2}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Multiply 1 and 2 to get 2.
sort(\frac{1}{4}+\frac{8}{4}+1-\frac{1}{2}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Convert 2 to fraction \frac{8}{4}.
sort(\frac{1+8}{4}+1-\frac{1}{2}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Since \frac{1}{4} and \frac{8}{4} have the same denominator, add them by adding their numerators.
sort(\frac{9}{4}+1-\frac{1}{2}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Add 1 and 8 to get 9.
sort(\frac{9}{4}+\frac{4}{4}-\frac{1}{2}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Convert 1 to fraction \frac{4}{4}.
sort(\frac{9+4}{4}-\frac{1}{2}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Since \frac{9}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
sort(\frac{13}{4}-\frac{1}{2}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Add 9 and 4 to get 13.
sort(\frac{13}{4}-\frac{2}{4}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Least common multiple of 4 and 2 is 4. Convert \frac{13}{4} and \frac{1}{2} to fractions with denominator 4.
sort(\frac{13-2}{4}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Since \frac{13}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{11}{4}-\left(1+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Subtract 2 from 13 to get 11.
sort(\frac{11}{4}-\left(\frac{2}{2}+\frac{1}{2}\right),\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Convert 1 to fraction \frac{2}{2}.
sort(\frac{11}{4}-\frac{2+1}{2},\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
sort(\frac{11}{4}-\frac{3}{2},\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Add 2 and 1 to get 3.
sort(\frac{11}{4}-\frac{6}{4},\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Least common multiple of 4 and 2 is 4. Convert \frac{11}{4} and \frac{3}{2} to fractions with denominator 4.
sort(\frac{11-6}{4},\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Since \frac{11}{4} and \frac{6}{4} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{5}{4},\frac{12\times 4+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Subtract 6 from 11 to get 5.
sort(\frac{5}{4},\frac{48+3}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Multiply 12 and 4 to get 48.
sort(\frac{5}{4},\frac{51}{4}-\left(\frac{2\times 3+1}{3}+\frac{6\times 12+5}{12}\right))
Add 48 and 3 to get 51.
sort(\frac{5}{4},\frac{51}{4}-\left(\frac{6+1}{3}+\frac{6\times 12+5}{12}\right))
Multiply 2 and 3 to get 6.
sort(\frac{5}{4},\frac{51}{4}-\left(\frac{7}{3}+\frac{6\times 12+5}{12}\right))
Add 6 and 1 to get 7.
sort(\frac{5}{4},\frac{51}{4}-\left(\frac{7}{3}+\frac{72+5}{12}\right))
Multiply 6 and 12 to get 72.
sort(\frac{5}{4},\frac{51}{4}-\left(\frac{7}{3}+\frac{77}{12}\right))
Add 72 and 5 to get 77.
sort(\frac{5}{4},\frac{51}{4}-\left(\frac{28}{12}+\frac{77}{12}\right))
Least common multiple of 3 and 12 is 12. Convert \frac{7}{3} and \frac{77}{12} to fractions with denominator 12.
sort(\frac{5}{4},\frac{51}{4}-\frac{28+77}{12})
Since \frac{28}{12} and \frac{77}{12} have the same denominator, add them by adding their numerators.
sort(\frac{5}{4},\frac{51}{4}-\frac{105}{12})
Add 28 and 77 to get 105.
sort(\frac{5}{4},\frac{51}{4}-\frac{35}{4})
Reduce the fraction \frac{105}{12} to lowest terms by extracting and canceling out 3.
sort(\frac{5}{4},\frac{51-35}{4})
Since \frac{51}{4} and \frac{35}{4} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{5}{4},\frac{16}{4})
Subtract 35 from 51 to get 16.
sort(\frac{5}{4},4)
Divide 16 by 4 to get 4.
\frac{5}{4},4
Convert decimal numbers in the list \frac{5}{4},4 to fractions.