\left. \begin{array} { l } { ( + 2,5 ) \cdot ( + 3 ) = + 7,5 } \\ { ( + 1,5 ) \cdot ( + 3 ) = + 4,5 } \end{array} \right.
Verify
true
Share
Copied to clipboard
7,5=7,5\text{ and }1,5\times 3=4,5
Multiply 2,5 and 3 to get 7,5.
\text{true}\text{ and }1,5\times 3=4,5
Compare 7,5 and 7,5.
\text{true}\text{ and }4,5=4,5
Multiply 1,5 and 3 to get 4,5.
\text{true}\text{ and }\text{true}
Compare 4,5 and 4,5.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}