Solve for x_2, x_3, x_1
x_{2}=1
x_{3}=3
x_{1}=-6
Share
Copied to clipboard
x_{3}=-3x_{2}+6
Solve -3x_{2}-x_{3}+6=0 for x_{3}.
3x_{1}+4x_{2}+3\left(-3x_{2}+6\right)+5=0 x_{1}+x_{2}-3x_{2}+6+2=0
Substitute -3x_{2}+6 for x_{3} in the second and third equation.
x_{2}=\frac{3}{5}x_{1}+\frac{23}{5} x_{1}=-8+2x_{2}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=-8+2\left(\frac{3}{5}x_{1}+\frac{23}{5}\right)
Substitute \frac{3}{5}x_{1}+\frac{23}{5} for x_{2} in the equation x_{1}=-8+2x_{2}.
x_{1}=-6
Solve x_{1}=-8+2\left(\frac{3}{5}x_{1}+\frac{23}{5}\right) for x_{1}.
x_{2}=\frac{3}{5}\left(-6\right)+\frac{23}{5}
Substitute -6 for x_{1} in the equation x_{2}=\frac{3}{5}x_{1}+\frac{23}{5}.
x_{2}=1
Calculate x_{2} from x_{2}=\frac{3}{5}\left(-6\right)+\frac{23}{5}.
x_{3}=-3+6
Substitute 1 for x_{2} in the equation x_{3}=-3x_{2}+6.
x_{3}=3
Calculate x_{3} from x_{3}=-3+6.
x_{2}=1 x_{3}=3 x_{1}=-6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}