Solve for x
x=\frac{-37+\sqrt{215}i}{16}\approx -2.3125+0.916429894i
x=\frac{-\sqrt{215}i-37}{16}\approx -2.3125-0.916429894i
Share
Copied to clipboard
2x\times 4\left(2x+5\right)+4\left(2x+5\right)\times 5=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Variable x cannot be equal to -\frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by 4\left(2x+5\right), the least common multiple of 4,4x+10.
8x\left(2x+5\right)+4\left(2x+5\right)\times 5=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Multiply 2 and 4 to get 8.
16x^{2}+40x+4\left(2x+5\right)\times 5=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Use the distributive property to multiply 8x by 2x+5.
16x^{2}+40x+20\left(2x+5\right)=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Multiply 4 and 5 to get 20.
16x^{2}+40x+40x+100=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Use the distributive property to multiply 20 by 2x+5.
16x^{2}+80x+100=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Combine 40x and 40x to get 80x.
16x^{2}+80x+100=3\left(2x+5\right)-2\times 7
Multiply 4 and \frac{3}{4} to get 3.
16x^{2}+80x+100=6x+15-2\times 7
Use the distributive property to multiply 3 by 2x+5.
16x^{2}+80x+100=6x+15-14
Multiply -2 and 7 to get -14.
16x^{2}+80x+100=6x+1
Subtract 14 from 15 to get 1.
16x^{2}+80x+100-6x=1
Subtract 6x from both sides.
16x^{2}+74x+100=1
Combine 80x and -6x to get 74x.
16x^{2}+74x+100-1=0
Subtract 1 from both sides.
16x^{2}+74x+99=0
Subtract 1 from 100 to get 99.
x=\frac{-74±\sqrt{74^{2}-4\times 16\times 99}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 74 for b, and 99 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-74±\sqrt{5476-4\times 16\times 99}}{2\times 16}
Square 74.
x=\frac{-74±\sqrt{5476-64\times 99}}{2\times 16}
Multiply -4 times 16.
x=\frac{-74±\sqrt{5476-6336}}{2\times 16}
Multiply -64 times 99.
x=\frac{-74±\sqrt{-860}}{2\times 16}
Add 5476 to -6336.
x=\frac{-74±2\sqrt{215}i}{2\times 16}
Take the square root of -860.
x=\frac{-74±2\sqrt{215}i}{32}
Multiply 2 times 16.
x=\frac{-74+2\sqrt{215}i}{32}
Now solve the equation x=\frac{-74±2\sqrt{215}i}{32} when ± is plus. Add -74 to 2i\sqrt{215}.
x=\frac{-37+\sqrt{215}i}{16}
Divide -74+2i\sqrt{215} by 32.
x=\frac{-2\sqrt{215}i-74}{32}
Now solve the equation x=\frac{-74±2\sqrt{215}i}{32} when ± is minus. Subtract 2i\sqrt{215} from -74.
x=\frac{-\sqrt{215}i-37}{16}
Divide -74-2i\sqrt{215} by 32.
x=\frac{-37+\sqrt{215}i}{16} x=\frac{-\sqrt{215}i-37}{16}
The equation is now solved.
2x\times 4\left(2x+5\right)+4\left(2x+5\right)\times 5=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Variable x cannot be equal to -\frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by 4\left(2x+5\right), the least common multiple of 4,4x+10.
8x\left(2x+5\right)+4\left(2x+5\right)\times 5=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Multiply 2 and 4 to get 8.
16x^{2}+40x+4\left(2x+5\right)\times 5=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Use the distributive property to multiply 8x by 2x+5.
16x^{2}+40x+20\left(2x+5\right)=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Multiply 4 and 5 to get 20.
16x^{2}+40x+40x+100=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Use the distributive property to multiply 20 by 2x+5.
16x^{2}+80x+100=4\left(2x+5\right)\times \frac{3}{4}-2\times 7
Combine 40x and 40x to get 80x.
16x^{2}+80x+100=3\left(2x+5\right)-2\times 7
Multiply 4 and \frac{3}{4} to get 3.
16x^{2}+80x+100=6x+15-2\times 7
Use the distributive property to multiply 3 by 2x+5.
16x^{2}+80x+100=6x+15-14
Multiply -2 and 7 to get -14.
16x^{2}+80x+100=6x+1
Subtract 14 from 15 to get 1.
16x^{2}+80x+100-6x=1
Subtract 6x from both sides.
16x^{2}+74x+100=1
Combine 80x and -6x to get 74x.
16x^{2}+74x=1-100
Subtract 100 from both sides.
16x^{2}+74x=-99
Subtract 100 from 1 to get -99.
\frac{16x^{2}+74x}{16}=-\frac{99}{16}
Divide both sides by 16.
x^{2}+\frac{74}{16}x=-\frac{99}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+\frac{37}{8}x=-\frac{99}{16}
Reduce the fraction \frac{74}{16} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{37}{8}x+\left(\frac{37}{16}\right)^{2}=-\frac{99}{16}+\left(\frac{37}{16}\right)^{2}
Divide \frac{37}{8}, the coefficient of the x term, by 2 to get \frac{37}{16}. Then add the square of \frac{37}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{37}{8}x+\frac{1369}{256}=-\frac{99}{16}+\frac{1369}{256}
Square \frac{37}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{37}{8}x+\frac{1369}{256}=-\frac{215}{256}
Add -\frac{99}{16} to \frac{1369}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{37}{16}\right)^{2}=-\frac{215}{256}
Factor x^{2}+\frac{37}{8}x+\frac{1369}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{37}{16}\right)^{2}}=\sqrt{-\frac{215}{256}}
Take the square root of both sides of the equation.
x+\frac{37}{16}=\frac{\sqrt{215}i}{16} x+\frac{37}{16}=-\frac{\sqrt{215}i}{16}
Simplify.
x=\frac{-37+\sqrt{215}i}{16} x=\frac{-\sqrt{215}i-37}{16}
Subtract \frac{37}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}