Solve for x_1, x_2
x_{1}=\frac{2x_{3}+23}{7}
x_{2}=\frac{5-2x_{3}}{7}
Share
Copied to clipboard
x_{1}+x_{2}=4
Consider the first equation. Combine 2x_{2} and -x_{2} to get x_{2}.
3x_{1}-4x_{2}=7+2x_{3}
Consider the second equation. Add 2x_{3} to both sides.
x_{1}+x_{2}=4,3x_{1}-4x_{2}=2x_{3}+7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x_{1}+x_{2}=4
Choose one of the equations and solve it for x_{1} by isolating x_{1} on the left hand side of the equal sign.
x_{1}=-x_{2}+4
Subtract x_{2} from both sides of the equation.
3\left(-x_{2}+4\right)-4x_{2}=2x_{3}+7
Substitute -x_{2}+4 for x_{1} in the other equation, 3x_{1}-4x_{2}=2x_{3}+7.
-3x_{2}+12-4x_{2}=2x_{3}+7
Multiply 3 times -x_{2}+4.
-7x_{2}+12=2x_{3}+7
Add -3x_{2} to -4x_{2}.
-7x_{2}=2x_{3}-5
Subtract 12 from both sides of the equation.
x_{2}=\frac{5-2x_{3}}{7}
Divide both sides by -7.
x_{1}=-\frac{5-2x_{3}}{7}+4
Substitute \frac{5-2x_{3}}{7} for x_{2} in x_{1}=-x_{2}+4. Because the resulting equation contains only one variable, you can solve for x_{1} directly.
x_{1}=\frac{2x_{3}-5}{7}+4
Multiply -1 times \frac{5-2x_{3}}{7}.
x_{1}=\frac{2x_{3}+23}{7}
Add 4 to \frac{-5+2x_{3}}{7}.
x_{1}=\frac{2x_{3}+23}{7},x_{2}=\frac{5-2x_{3}}{7}
The system is now solved.
x_{1}+x_{2}=4
Consider the first equation. Combine 2x_{2} and -x_{2} to get x_{2}.
3x_{1}-4x_{2}=7+2x_{3}
Consider the second equation. Add 2x_{3} to both sides.
x_{1}+x_{2}=4,3x_{1}-4x_{2}=2x_{3}+7
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\3&-4\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}4\\2x_{3}+7\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\3&-4\end{matrix}\right))\left(\begin{matrix}1&1\\3&-4\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-4\end{matrix}\right))\left(\begin{matrix}4\\2x_{3}+7\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-4\end{matrix}\right))\left(\begin{matrix}4\\2x_{3}+7\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-4\end{matrix}\right))\left(\begin{matrix}4\\2x_{3}+7\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-3}&-\frac{1}{-4-3}\\-\frac{3}{-4-3}&\frac{1}{-4-3}\end{matrix}\right)\left(\begin{matrix}4\\2x_{3}+7\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&\frac{1}{7}\\\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\2x_{3}+7\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\times 4+\frac{1}{7}\left(2x_{3}+7\right)\\\frac{3}{7}\times 4-\frac{1}{7}\left(2x_{3}+7\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{2x_{3}+23}{7}\\\frac{5-2x_{3}}{7}\end{matrix}\right)
Do the arithmetic.
x_{1}=\frac{2x_{3}+23}{7},x_{2}=\frac{5-2x_{3}}{7}
Extract the matrix elements x_{1} and x_{2}.
x_{1}+x_{2}=4
Consider the first equation. Combine 2x_{2} and -x_{2} to get x_{2}.
3x_{1}-4x_{2}=7+2x_{3}
Consider the second equation. Add 2x_{3} to both sides.
x_{1}+x_{2}=4,3x_{1}-4x_{2}=2x_{3}+7
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x_{1}+3x_{2}=3\times 4,3x_{1}-4x_{2}=2x_{3}+7
To make x_{1} and 3x_{1} equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 1.
3x_{1}+3x_{2}=12,3x_{1}-4x_{2}=2x_{3}+7
Simplify.
3x_{1}-3x_{1}+3x_{2}+4x_{2}=12-2x_{3}-7
Subtract 3x_{1}-4x_{2}=2x_{3}+7 from 3x_{1}+3x_{2}=12 by subtracting like terms on each side of the equal sign.
3x_{2}+4x_{2}=12-2x_{3}-7
Add 3x_{1} to -3x_{1}. Terms 3x_{1} and -3x_{1} cancel out, leaving an equation with only one variable that can be solved.
7x_{2}=12-2x_{3}-7
Add 3x_{2} to 4x_{2}.
7x_{2}=5-2x_{3}
Add 12 to -7-2x_{3}.
x_{2}=\frac{5-2x_{3}}{7}
Divide both sides by 7.
3x_{1}-4\times \frac{5-2x_{3}}{7}=2x_{3}+7
Substitute \frac{5-2x_{3}}{7} for x_{2} in 3x_{1}-4x_{2}=2x_{3}+7. Because the resulting equation contains only one variable, you can solve for x_{1} directly.
3x_{1}+\frac{8x_{3}-20}{7}=2x_{3}+7
Multiply -4 times \frac{5-2x_{3}}{7}.
3x_{1}=\frac{6x_{3}+69}{7}
Subtract \frac{-20+8x_{3}}{7} from both sides of the equation.
x_{1}=\frac{2x_{3}+23}{7}
Divide both sides by 3.
x_{1}=\frac{2x_{3}+23}{7},x_{2}=\frac{5-2x_{3}}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}