Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-20x+25-\left(x+1\right)^{2}=7x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-20x+25-\left(x^{2}+2x+1\right)=7x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
4x^{2}-20x+25-x^{2}-2x-1=7x
To find the opposite of x^{2}+2x+1, find the opposite of each term.
3x^{2}-20x+25-2x-1=7x
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-22x+25-1=7x
Combine -20x and -2x to get -22x.
3x^{2}-22x+24=7x
Subtract 1 from 25 to get 24.
3x^{2}-22x+24-7x=0
Subtract 7x from both sides.
3x^{2}-29x+24=0
Combine -22x and -7x to get -29x.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 3\times 24}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -29 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 3\times 24}}{2\times 3}
Square -29.
x=\frac{-\left(-29\right)±\sqrt{841-12\times 24}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-29\right)±\sqrt{841-288}}{2\times 3}
Multiply -12 times 24.
x=\frac{-\left(-29\right)±\sqrt{553}}{2\times 3}
Add 841 to -288.
x=\frac{29±\sqrt{553}}{2\times 3}
The opposite of -29 is 29.
x=\frac{29±\sqrt{553}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{553}+29}{6}
Now solve the equation x=\frac{29±\sqrt{553}}{6} when ± is plus. Add 29 to \sqrt{553}.
x=\frac{29-\sqrt{553}}{6}
Now solve the equation x=\frac{29±\sqrt{553}}{6} when ± is minus. Subtract \sqrt{553} from 29.
x=\frac{\sqrt{553}+29}{6} x=\frac{29-\sqrt{553}}{6}
The equation is now solved.
4x^{2}-20x+25-\left(x+1\right)^{2}=7x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-20x+25-\left(x^{2}+2x+1\right)=7x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
4x^{2}-20x+25-x^{2}-2x-1=7x
To find the opposite of x^{2}+2x+1, find the opposite of each term.
3x^{2}-20x+25-2x-1=7x
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-22x+25-1=7x
Combine -20x and -2x to get -22x.
3x^{2}-22x+24=7x
Subtract 1 from 25 to get 24.
3x^{2}-22x+24-7x=0
Subtract 7x from both sides.
3x^{2}-29x+24=0
Combine -22x and -7x to get -29x.
3x^{2}-29x=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-29x}{3}=-\frac{24}{3}
Divide both sides by 3.
x^{2}-\frac{29}{3}x=-\frac{24}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{29}{3}x=-8
Divide -24 by 3.
x^{2}-\frac{29}{3}x+\left(-\frac{29}{6}\right)^{2}=-8+\left(-\frac{29}{6}\right)^{2}
Divide -\frac{29}{3}, the coefficient of the x term, by 2 to get -\frac{29}{6}. Then add the square of -\frac{29}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{29}{3}x+\frac{841}{36}=-8+\frac{841}{36}
Square -\frac{29}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{29}{3}x+\frac{841}{36}=\frac{553}{36}
Add -8 to \frac{841}{36}.
\left(x-\frac{29}{6}\right)^{2}=\frac{553}{36}
Factor x^{2}-\frac{29}{3}x+\frac{841}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{6}\right)^{2}}=\sqrt{\frac{553}{36}}
Take the square root of both sides of the equation.
x-\frac{29}{6}=\frac{\sqrt{553}}{6} x-\frac{29}{6}=-\frac{\sqrt{553}}{6}
Simplify.
x=\frac{\sqrt{553}+29}{6} x=\frac{29-\sqrt{553}}{6}
Add \frac{29}{6} to both sides of the equation.