Solve for m
m=3
Share
Copied to clipboard
\left(m-2\right)m+1=4\left(m-2\right)
Variable m cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by m-2.
m^{2}-2m+1=4\left(m-2\right)
Use the distributive property to multiply m-2 by m.
m^{2}-2m+1=4m-8
Use the distributive property to multiply 4 by m-2.
m^{2}-2m+1-4m=-8
Subtract 4m from both sides.
m^{2}-6m+1=-8
Combine -2m and -4m to get -6m.
m^{2}-6m+1+8=0
Add 8 to both sides.
m^{2}-6m+9=0
Add 1 and 8 to get 9.
m=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Square -6.
m=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Multiply -4 times 9.
m=\frac{-\left(-6\right)±\sqrt{0}}{2}
Add 36 to -36.
m=-\frac{-6}{2}
Take the square root of 0.
m=\frac{6}{2}
The opposite of -6 is 6.
m=3
Divide 6 by 2.
\left(m-2\right)m+1=4\left(m-2\right)
Variable m cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by m-2.
m^{2}-2m+1=4\left(m-2\right)
Use the distributive property to multiply m-2 by m.
m^{2}-2m+1=4m-8
Use the distributive property to multiply 4 by m-2.
m^{2}-2m+1-4m=-8
Subtract 4m from both sides.
m^{2}-6m+1=-8
Combine -2m and -4m to get -6m.
m^{2}-6m=-8-1
Subtract 1 from both sides.
m^{2}-6m=-9
Subtract 1 from -8 to get -9.
m^{2}-6m+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-6m+9=-9+9
Square -3.
m^{2}-6m+9=0
Add -9 to 9.
\left(m-3\right)^{2}=0
Factor m^{2}-6m+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-3\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
m-3=0 m-3=0
Simplify.
m=3 m=3
Add 3 to both sides of the equation.
m=3
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}