Solve for A
A=\frac{5+i\sqrt{28\sqrt{2}-25}}{2}\approx 2.5+1.910365132i
A=\frac{-i\sqrt{28\sqrt{2}-25}+5}{2}\approx 2.5-1.910365132i
Share
Copied to clipboard
A^{2}-5A+7\sqrt{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
A=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 7\sqrt{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and 7\sqrt{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{-\left(-5\right)±\sqrt{25-4\times 7\sqrt{2}}}{2}
Square -5.
A=\frac{-\left(-5\right)±\sqrt{25-28\sqrt{2}}}{2}
Multiply -4 times 7\sqrt{2}.
A=\frac{-\left(-5\right)±i\sqrt{-\left(25-28\sqrt{2}\right)}}{2}
Take the square root of 25-28\sqrt{2}.
A=\frac{5±i\sqrt{-\left(25-28\sqrt{2}\right)}}{2}
The opposite of -5 is 5.
A=\frac{5+i\sqrt{28\sqrt{2}-25}}{2}
Now solve the equation A=\frac{5±i\sqrt{-\left(25-28\sqrt{2}\right)}}{2} when ± is plus. Add 5 to i\sqrt{-\left(25-28\sqrt{2}\right)}.
A=\frac{-i\sqrt{28\sqrt{2}-25}+5}{2}
Now solve the equation A=\frac{5±i\sqrt{-\left(25-28\sqrt{2}\right)}}{2} when ± is minus. Subtract i\sqrt{-\left(25-28\sqrt{2}\right)} from 5.
A=\frac{5+i\sqrt{28\sqrt{2}-25}}{2} A=\frac{-i\sqrt{28\sqrt{2}-25}+5}{2}
The equation is now solved.
A^{2}-5A+7\sqrt{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
A^{2}-5A+7\sqrt{2}-7\sqrt{2}=-7\sqrt{2}
Subtract 7\sqrt{2} from both sides of the equation.
A^{2}-5A=-7\sqrt{2}
Subtracting 7\sqrt{2} from itself leaves 0.
A^{2}-5A+\left(-\frac{5}{2}\right)^{2}=-7\sqrt{2}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
A^{2}-5A+\frac{25}{4}=-7\sqrt{2}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
A^{2}-5A+\frac{25}{4}=\frac{25}{4}-7\sqrt{2}
Add -7\sqrt{2} to \frac{25}{4}.
\left(A-\frac{5}{2}\right)^{2}=\frac{25}{4}-7\sqrt{2}
Factor A^{2}-5A+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(A-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}-7\sqrt{2}}
Take the square root of both sides of the equation.
A-\frac{5}{2}=\frac{i\sqrt{-\left(25-28\sqrt{2}\right)}}{2} A-\frac{5}{2}=-\frac{i\sqrt{28\sqrt{2}-25}}{2}
Simplify.
A=\frac{5+i\sqrt{-\left(25-28\sqrt{2}\right)}}{2} A=\frac{-i\sqrt{28\sqrt{2}-25}+5}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}