Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

z=-5x-2y+19
Solve 5x+2y+z=19 for z.
\pi \times 2x-3y-2\left(-5x-2y+19\right)=10 10x+y-2\left(-5x-2y+19\right)=42
Substitute -5x-2y+19 for z in the second and third equation.
y=-10x-2\pi x+48 x=4-\frac{1}{4}y
Solve these equations for y and x respectively.
x=4-\frac{1}{4}\left(-10x-2\pi x+48\right)
Substitute -10x-2\pi x+48 for y in the equation x=4-\frac{1}{4}y.
x=16\left(\pi +3\right)^{-1}
Solve x=4-\frac{1}{4}\left(-10x-2\pi x+48\right) for x.
y=-10\times 16\left(\pi +3\right)^{-1}-2\pi \times 16\left(\pi +3\right)^{-1}+48
Substitute 16\left(\pi +3\right)^{-1} for x in the equation y=-10x-2\pi x+48.
y=-16\left(3+\pi \right)^{-1}+16\left(3+\pi \right)^{-1}\pi
Calculate y from y=-10\times 16\left(\pi +3\right)^{-1}-2\pi \times 16\left(\pi +3\right)^{-1}+48.
z=-5\times 16\left(\pi +3\right)^{-1}-2\left(-16\left(3+\pi \right)^{-1}+16\left(3+\pi \right)^{-1}\pi \right)+19
Substitute -16\left(3+\pi \right)^{-1}+16\left(3+\pi \right)^{-1}\pi for y and 16\left(\pi +3\right)^{-1} for x in the equation z=-5x-2y+19.
z=9\left(3+\pi \right)^{-1}-13\left(3+\pi \right)^{-1}\pi
Calculate z from z=-5\times 16\left(\pi +3\right)^{-1}-2\left(-16\left(3+\pi \right)^{-1}+16\left(3+\pi \right)^{-1}\pi \right)+19.
x=16\left(\pi +3\right)^{-1} y=-16\left(3+\pi \right)^{-1}+16\left(3+\pi \right)^{-1}\pi z=9\left(3+\pi \right)^{-1}-13\left(3+\pi \right)^{-1}\pi
The system is now solved.