Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=-5
Consider the second equation. Subtract 5 from both sides. Anything subtracted from zero gives its negation.
x+\left(x-3\left(-5\right)\right)\left(x+1\right)+\left(-5\right)^{2}+x\left(-5\right)=\left(x-\left(-5\right)\right)^{2}+x-2\left(-5\right)+10
Consider the first equation. Insert the known values of variables into the equation.
x+\left(x+15\right)\left(x+1\right)+\left(-5\right)^{2}+x\left(-5\right)=\left(x-\left(-5\right)\right)^{2}+x-2\left(-5\right)+10
Multiply -3 and -5 to get 15.
x+x^{2}+16x+15+\left(-5\right)^{2}+x\left(-5\right)=\left(x-\left(-5\right)\right)^{2}+x-2\left(-5\right)+10
Use the distributive property to multiply x+15 by x+1 and combine like terms.
17x+x^{2}+15+\left(-5\right)^{2}+x\left(-5\right)=\left(x-\left(-5\right)\right)^{2}+x-2\left(-5\right)+10
Combine x and 16x to get 17x.
17x+x^{2}+15+25+x\left(-5\right)=\left(x-\left(-5\right)\right)^{2}+x-2\left(-5\right)+10
Calculate -5 to the power of 2 and get 25.
17x+x^{2}+40+x\left(-5\right)=\left(x-\left(-5\right)\right)^{2}+x-2\left(-5\right)+10
Add 15 and 25 to get 40.
12x+x^{2}+40=\left(x-\left(-5\right)\right)^{2}+x-2\left(-5\right)+10
Combine 17x and x\left(-5\right) to get 12x.
12x+x^{2}+40=\left(x+5\right)^{2}+x-2\left(-5\right)+10
Multiply -1 and -5 to get 5.
12x+x^{2}+40=x^{2}+10x+25+x-2\left(-5\right)+10
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
12x+x^{2}+40=x^{2}+11x+25-2\left(-5\right)+10
Combine 10x and x to get 11x.
12x+x^{2}+40=x^{2}+11x+25+10+10
Multiply -2 and -5 to get 10.
12x+x^{2}+40=x^{2}+11x+35+10
Add 25 and 10 to get 35.
12x+x^{2}+40=x^{2}+11x+45
Add 35 and 10 to get 45.
12x+x^{2}+40-x^{2}=11x+45
Subtract x^{2} from both sides.
12x+40=11x+45
Combine x^{2} and -x^{2} to get 0.
12x+40-11x=45
Subtract 11x from both sides.
x+40=45
Combine 12x and -11x to get x.
x=45-40
Subtract 40 from both sides.
x=5
Subtract 40 from 45 to get 5.
x=5 y=-5
The system is now solved.