Solve for x, z
x=-3
z=4
Share
Copied to clipboard
\frac{5}{2}x-\frac{5}{2}+3=2x-1
Consider the first equation. Use the distributive property to multiply \frac{5}{2} by x-1.
\frac{5}{2}x+\frac{1}{2}=2x-1
Add -\frac{5}{2} and 3 to get \frac{1}{2}.
\frac{5}{2}x+\frac{1}{2}-2x=-1
Subtract 2x from both sides.
\frac{1}{2}x+\frac{1}{2}=-1
Combine \frac{5}{2}x and -2x to get \frac{1}{2}x.
\frac{1}{2}x=-1-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
\frac{1}{2}x=-\frac{3}{2}
Subtract \frac{1}{2} from -1 to get -\frac{3}{2}.
x=-\frac{3}{2}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x=-3
Multiply -\frac{3}{2} and 2 to get -3.
4z+2z=z+20
Consider the second equation. Multiply both sides of the equation by 4, the least common multiple of 2,4.
6z=z+20
Combine 4z and 2z to get 6z.
6z-z=20
Subtract z from both sides.
5z=20
Combine 6z and -z to get 5z.
z=\frac{20}{5}
Divide both sides by 5.
z=4
Divide 20 by 5 to get 4.
x=-3 z=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}