\left. \begin{array} { l } { \text { (a) } ( x - y ) ^ { 2 } - 4 ( x - y ) - 45 } \\ { \text { (a) } ( x + 3 ) ( x - 3 ) ( x ^ { 2 } + 9 ) } \end{array} \right.
Least Common Multiple
a\left(x^{4}-81\right)\left(ax^{2}-2axy-4x+ay^{2}+4y-45\right)
Evaluate
a\left(x-y\right)^{2}+4y-4x-45,\ a\left(x^{4}-81\right)
Share
Copied to clipboard
ax^{4}-81a=a\left(x-3\right)\left(x+3\right)\left(x^{2}+9\right)
Factor the expressions that are not already factored.
a\left(x-3\right)\left(x+3\right)\left(x^{2}+9\right)\left(ax^{2}-2axy-4x+ay^{2}+4y-45\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
a^{2}x^{6}-4ax^{5}-45ax^{4}-81a^{2}x^{2}+162xya^{2}+324ax+a^{2}y^{2}x^{4}-81a^{2}y^{2}-2ya^{2}x^{5}+4ayx^{4}-324ay+3645a
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}