Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{3}=2x_{1}+5x_{2}-8
Solve 2x_{1}+5x_{2}-x_{3}=8 for x_{3}.
3x_{1}+4x_{2}+2\left(2x_{1}+5x_{2}-8\right)=8 8\left(2x_{1}+5x_{2}-8\right)+5x_{2}-3x_{2}=6
Substitute 2x_{1}+5x_{2}-8 for x_{3} in the second and third equation.
x_{2}=-\frac{1}{2}x_{1}+\frac{12}{7} x_{1}=\frac{35}{8}-\frac{21}{8}x_{2}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=\frac{35}{8}-\frac{21}{8}\left(-\frac{1}{2}x_{1}+\frac{12}{7}\right)
Substitute -\frac{1}{2}x_{1}+\frac{12}{7} for x_{2} in the equation x_{1}=\frac{35}{8}-\frac{21}{8}x_{2}.
x_{1}=\frac{2}{5}
Solve x_{1}=\frac{35}{8}-\frac{21}{8}\left(-\frac{1}{2}x_{1}+\frac{12}{7}\right) for x_{1}.
x_{2}=-\frac{1}{2}\times \frac{2}{5}+\frac{12}{7}
Substitute \frac{2}{5} for x_{1} in the equation x_{2}=-\frac{1}{2}x_{1}+\frac{12}{7}.
x_{2}=\frac{53}{35}
Calculate x_{2} from x_{2}=-\frac{1}{2}\times \frac{2}{5}+\frac{12}{7}.
x_{3}=2\times \frac{2}{5}+5\times \frac{53}{35}-8
Substitute \frac{53}{35} for x_{2} and \frac{2}{5} for x_{1} in the equation x_{3}=2x_{1}+5x_{2}-8.
x_{3}=\frac{13}{35}
Calculate x_{3} from x_{3}=2\times \frac{2}{5}+5\times \frac{53}{35}-8.
x_{1}=\frac{2}{5} x_{2}=\frac{53}{35} x_{3}=\frac{13}{35}
The system is now solved.