\left. \begin{array} { l } { \text { (1) } ( + \frac { 2 } { 5 } ) - ( - \frac { 3 } { 5 } ) = 1 } \\ { \text { (2) } ( - \frac { 2 } { 5 } ) - ( - \frac { 3 } { 5 } ) = \frac { 1 } { 5 } } \end{array} \right.
Verify
false
Share
Copied to clipboard
\frac{2}{5}-\left(-\frac{3}{5}\right)=1\text{ and }2\left(-\frac{2}{5}\right)-\left(-\frac{3}{5}\right)=\frac{1}{5}
Multiply 1 and \frac{2}{5} to get \frac{2}{5}.
\frac{2}{5}+\frac{3}{5}=1\text{ and }2\left(-\frac{2}{5}\right)-\left(-\frac{3}{5}\right)=\frac{1}{5}
The opposite of -\frac{3}{5} is \frac{3}{5}.
\frac{2+3}{5}=1\text{ and }2\left(-\frac{2}{5}\right)-\left(-\frac{3}{5}\right)=\frac{1}{5}
Since \frac{2}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
\frac{5}{5}=1\text{ and }2\left(-\frac{2}{5}\right)-\left(-\frac{3}{5}\right)=\frac{1}{5}
Add 2 and 3 to get 5.
1=1\text{ and }2\left(-\frac{2}{5}\right)-\left(-\frac{3}{5}\right)=\frac{1}{5}
Divide 5 by 5 to get 1.
\text{true}\text{ and }2\left(-\frac{2}{5}\right)-\left(-\frac{3}{5}\right)=\frac{1}{5}
Compare 1 and 1.
\text{true}\text{ and }\frac{2\left(-2\right)}{5}-\left(-\frac{3}{5}\right)=\frac{1}{5}
Express 2\left(-\frac{2}{5}\right) as a single fraction.
\text{true}\text{ and }\frac{-4}{5}-\left(-\frac{3}{5}\right)=\frac{1}{5}
Multiply 2 and -2 to get -4.
\text{true}\text{ and }-\frac{4}{5}-\left(-\frac{3}{5}\right)=\frac{1}{5}
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
\text{true}\text{ and }-\frac{4}{5}+\frac{3}{5}=\frac{1}{5}
The opposite of -\frac{3}{5} is \frac{3}{5}.
\text{true}\text{ and }\frac{-4+3}{5}=\frac{1}{5}
Since -\frac{4}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
\text{true}\text{ and }-\frac{1}{5}=\frac{1}{5}
Add -4 and 3 to get -1.
\text{true}\text{ and }\text{false}
Compare -\frac{1}{5} and \frac{1}{5}.
\text{false}
The conjunction of \text{true} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}