Skip to main content
Evaluate
Tick mark Image

Share

4\sqrt{3}-\sqrt{3}-\sqrt{\frac{1}{2}}\sqrt{12}+\sqrt{24}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
3\sqrt{3}-\sqrt{\frac{1}{2}}\sqrt{12}+\sqrt{24}
Combine 4\sqrt{3} and -\sqrt{3} to get 3\sqrt{3}.
3\sqrt{3}-\frac{\sqrt{1}}{\sqrt{2}}\sqrt{12}+\sqrt{24}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
3\sqrt{3}-\frac{1}{\sqrt{2}}\sqrt{12}+\sqrt{24}
Calculate the square root of 1 and get 1.
3\sqrt{3}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{12}+\sqrt{24}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3\sqrt{3}-\frac{\sqrt{2}}{2}\sqrt{12}+\sqrt{24}
The square of \sqrt{2} is 2.
3\sqrt{3}-\frac{\sqrt{2}}{2}\times 2\sqrt{3}+\sqrt{24}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
3\sqrt{3}-\sqrt{2}\sqrt{3}+\sqrt{24}
Cancel out 2 and 2.
3\sqrt{3}-\sqrt{6}+\sqrt{24}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3\sqrt{3}-\sqrt{6}+2\sqrt{6}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
3\sqrt{3}+\sqrt{6}
Combine -\sqrt{6} and 2\sqrt{6} to get \sqrt{6}.