Skip to main content
Sort
Tick mark Image
Evaluate
Tick mark Image

Share

sort(\sqrt{121-9^{2}-3\times 5}\sqrt{13^{2}-12^{2}-3^{2}},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate 11 to the power of 2 and get 121.
sort(\sqrt{121-81-3\times 5}\sqrt{13^{2}-12^{2}-3^{2}},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate 9 to the power of 2 and get 81.
sort(\sqrt{40-3\times 5}\sqrt{13^{2}-12^{2}-3^{2}},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Subtract 81 from 121 to get 40.
sort(\sqrt{40-15}\sqrt{13^{2}-12^{2}-3^{2}},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Multiply 3 and 5 to get 15.
sort(\sqrt{25}\sqrt{13^{2}-12^{2}-3^{2}},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Subtract 15 from 40 to get 25.
sort(5\sqrt{13^{2}-12^{2}-3^{2}},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate the square root of 25 and get 5.
sort(5\sqrt{169-12^{2}-3^{2}},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate 13 to the power of 2 and get 169.
sort(5\sqrt{169-144-3^{2}},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate 12 to the power of 2 and get 144.
sort(5\sqrt{25-3^{2}},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Subtract 144 from 169 to get 25.
sort(5\sqrt{25-9},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate 3 to the power of 2 and get 9.
sort(5\sqrt{16},\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Subtract 9 from 25 to get 16.
sort(5\times 4,\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate the square root of 16 and get 4.
sort(20,\sqrt{\left(\left(\frac{1}{2^{2}}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Multiply 5 and 4 to get 20.
sort(20,\sqrt{\left(\left(\frac{1}{4}+\frac{1}{2}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate 2 to the power of 2 and get 4.
sort(20,\sqrt{\left(\left(\frac{1}{4}+\frac{2}{4}\right)\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Least common multiple of 4 and 2 is 4. Convert \frac{1}{4} and \frac{1}{2} to fractions with denominator 4.
sort(20,\sqrt{\left(\frac{1+2}{4}\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Since \frac{1}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
sort(20,\sqrt{\left(\frac{3}{4}\left(1-\frac{3}{2^{2}}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Add 1 and 2 to get 3.
sort(20,\sqrt{\left(\frac{3}{4}\left(1-\frac{3}{4}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate 2 to the power of 2 and get 4.
sort(20,\sqrt{\left(\frac{3}{4}\left(\frac{4}{4}-\frac{3}{4}\right)+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Convert 1 to fraction \frac{4}{4}.
sort(20,\sqrt{\left(\frac{3}{4}\times \frac{4-3}{4}+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
sort(20,\sqrt{\left(\frac{3}{4}\times \frac{1}{4}+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Subtract 3 from 4 to get 1.
sort(20,\sqrt{\left(\frac{3\times 1}{4\times 4}+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Multiply \frac{3}{4} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
sort(20,\sqrt{\left(\frac{3}{16}+\left(\frac{2}{3^{2}}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Do the multiplications in the fraction \frac{3\times 1}{4\times 4}.
sort(20,\sqrt{\left(\frac{3}{16}+\left(\frac{2}{9}-\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Calculate 3 to the power of 2 and get 9.
sort(20,\sqrt{\left(\frac{3}{16}+\left(\frac{4}{18}-\frac{3}{18}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Least common multiple of 9 and 6 is 18. Convert \frac{2}{9} and \frac{1}{6} to fractions with denominator 18.
sort(20,\sqrt{\left(\frac{3}{16}+\left(\frac{4-3}{18}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Since \frac{4}{18} and \frac{3}{18} have the same denominator, subtract them by subtracting their numerators.
sort(20,\sqrt{\left(\frac{3}{16}+\left(\frac{1}{18}+\frac{1}{3}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Subtract 3 from 4 to get 1.
sort(20,\sqrt{\left(\frac{3}{16}+\left(\frac{1}{18}+\frac{6}{18}\right)\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Least common multiple of 18 and 3 is 18. Convert \frac{1}{18} and \frac{1}{3} to fractions with denominator 18.
sort(20,\sqrt{\left(\frac{3}{16}+\frac{1+6}{18}\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Since \frac{1}{18} and \frac{6}{18} have the same denominator, add them by adding their numerators.
sort(20,\sqrt{\left(\frac{3}{16}+\frac{7}{18}\times \frac{9}{7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Add 1 and 6 to get 7.
sort(20,\sqrt{\left(\frac{3}{16}+\frac{7\times 9}{18\times 7}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Multiply \frac{7}{18} times \frac{9}{7} by multiplying numerator times numerator and denominator times denominator.
sort(20,\sqrt{\left(\frac{3}{16}+\frac{9}{18}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Cancel out 7 in both numerator and denominator.
sort(20,\sqrt{\left(\frac{3}{16}+\frac{1}{2}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Reduce the fraction \frac{9}{18} to lowest terms by extracting and canceling out 9.
sort(20,\sqrt{\left(\frac{3}{16}+\frac{8}{16}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Least common multiple of 16 and 2 is 16. Convert \frac{3}{16} and \frac{1}{2} to fractions with denominator 16.
sort(20,\sqrt{\left(\frac{3+8}{16}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Since \frac{3}{16} and \frac{8}{16} have the same denominator, add them by adding their numerators.
sort(20,\sqrt{\left(\frac{11}{16}+\frac{1}{2^{2}}\right)\times \frac{1}{15}})
Add 3 and 8 to get 11.
sort(20,\sqrt{\left(\frac{11}{16}+\frac{1}{4}\right)\times \frac{1}{15}})
Calculate 2 to the power of 2 and get 4.
sort(20,\sqrt{\left(\frac{11}{16}+\frac{4}{16}\right)\times \frac{1}{15}})
Least common multiple of 16 and 4 is 16. Convert \frac{11}{16} and \frac{1}{4} to fractions with denominator 16.
sort(20,\sqrt{\frac{11+4}{16}\times \frac{1}{15}})
Since \frac{11}{16} and \frac{4}{16} have the same denominator, add them by adding their numerators.
sort(20,\sqrt{\frac{15}{16}\times \frac{1}{15}})
Add 11 and 4 to get 15.
sort(20,\sqrt{\frac{15\times 1}{16\times 15}})
Multiply \frac{15}{16} times \frac{1}{15} by multiplying numerator times numerator and denominator times denominator.
sort(20,\sqrt{\frac{1}{16}})
Cancel out 15 in both numerator and denominator.
sort(20,\frac{1}{4})
Rewrite the square root of the division \frac{1}{16} as the division of square roots \frac{\sqrt{1}}{\sqrt{16}}. Take the square root of both numerator and denominator.
20,\frac{1}{4}
Convert decimal numbers in the list 20,\frac{1}{4} to fractions.
20
To sort the list, start from a single element 20.
\frac{1}{4},20
Insert \frac{1}{4} to the appropriate location in the new list.