\left. \begin{array} { l } { \sqrt { 1 + [ \frac { 19 } { 9 } + ( \frac { 7 } { 3 } + \frac { 3 } { 4 } - \frac { 1 } { 12 } ) - ( 5 - \frac { 1 } { 2 } : \frac { 3 } { 4 } ) ] } - \sqrt { ( \frac { 1 } { 3 } + \frac { 1 } { 9 } + 5 \times \frac { 1 } { 15 } ) \times ( \frac { 2 ^ { 2 } } { 3 } - \frac { 5 } { 3 ^ { 2 } } ) } } \\ { [ ( \frac { 1 } { 1 } + \frac { 5 } { 2 } ) \cdot \frac { 9 } { 9 } + ( 2 - \frac { 1 } { 1 } ) ] + 35 } \end{array} \right.
Sort
\frac{5}{9},\ \frac{79}{2}
Evaluate
\frac{5}{9},\ \frac{79}{2}
Share
Copied to clipboard
sort(\sqrt{1+\frac{19}{9}+\frac{7}{3}+\frac{3}{4}-\frac{1}{12}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times \frac{9}{9}+2-\frac{1}{1}+35)
Divide 1 by 1 to get 1.
sort(\sqrt{1+\frac{19}{9}+\frac{7}{3}+\frac{3}{4}-\frac{1}{12}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-\frac{1}{1}+35)
Divide 9 by 9 to get 1.
sort(\sqrt{1+\frac{19}{9}+\frac{7}{3}+\frac{3}{4}-\frac{1}{12}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Divide 1 by 1 to get 1.
sort(\sqrt{1+\frac{19}{9}+\frac{21}{9}+\frac{3}{4}-\frac{1}{12}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Least common multiple of 9 and 3 is 9. Convert \frac{19}{9} and \frac{7}{3} to fractions with denominator 9.
sort(\sqrt{1+\frac{19+21}{9}+\frac{3}{4}-\frac{1}{12}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{19}{9} and \frac{21}{9} have the same denominator, add them by adding their numerators.
sort(\sqrt{1+\frac{40}{9}+\frac{3}{4}-\frac{1}{12}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Add 19 and 21 to get 40.
sort(\sqrt{1+\frac{160}{36}+\frac{27}{36}-\frac{1}{12}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Least common multiple of 9 and 4 is 36. Convert \frac{40}{9} and \frac{3}{4} to fractions with denominator 36.
sort(\sqrt{1+\frac{160+27}{36}-\frac{1}{12}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{160}{36} and \frac{27}{36} have the same denominator, add them by adding their numerators.
sort(\sqrt{1+\frac{187}{36}-\frac{1}{12}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Add 160 and 27 to get 187.
sort(\sqrt{1+\frac{187}{36}-\frac{3}{36}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Least common multiple of 36 and 12 is 36. Convert \frac{187}{36} and \frac{1}{12} to fractions with denominator 36.
sort(\sqrt{1+\frac{187-3}{36}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{187}{36} and \frac{3}{36} have the same denominator, subtract them by subtracting their numerators.
sort(\sqrt{1+\frac{184}{36}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Subtract 3 from 187 to get 184.
sort(\sqrt{1+\frac{46}{9}-\left(5-\frac{\frac{1}{2}}{\frac{3}{4}}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Reduce the fraction \frac{184}{36} to lowest terms by extracting and canceling out 4.
sort(\sqrt{1+\frac{46}{9}-\left(5-\frac{1}{2}\times \frac{4}{3}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Divide \frac{1}{2} by \frac{3}{4} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{4}.
sort(\sqrt{1+\frac{46}{9}-\left(5-\frac{1\times 4}{2\times 3}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Multiply \frac{1}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
sort(\sqrt{1+\frac{46}{9}-\left(5-\frac{4}{6}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Do the multiplications in the fraction \frac{1\times 4}{2\times 3}.
sort(\sqrt{1+\frac{46}{9}-\left(5-\frac{2}{3}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
sort(\sqrt{1+\frac{46}{9}-\left(\frac{15}{3}-\frac{2}{3}\right)}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Convert 5 to fraction \frac{15}{3}.
sort(\sqrt{1+\frac{46}{9}-\frac{15-2}{3}}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{15}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
sort(\sqrt{1+\frac{46}{9}-\frac{13}{3}}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Subtract 2 from 15 to get 13.
sort(\sqrt{1+\frac{46}{9}-\frac{39}{9}}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Least common multiple of 9 and 3 is 9. Convert \frac{46}{9} and \frac{13}{3} to fractions with denominator 9.
sort(\sqrt{1+\frac{46-39}{9}}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{46}{9} and \frac{39}{9} have the same denominator, subtract them by subtracting their numerators.
sort(\sqrt{1+\frac{7}{9}}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Subtract 39 from 46 to get 7.
sort(\sqrt{\frac{9}{9}+\frac{7}{9}}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Convert 1 to fraction \frac{9}{9}.
sort(\sqrt{\frac{9+7}{9}}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{9}{9} and \frac{7}{9} have the same denominator, add them by adding their numerators.
sort(\sqrt{\frac{16}{9}}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Add 9 and 7 to get 16.
sort(\frac{4}{3}-\sqrt{\left(\frac{1}{3}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Rewrite the square root of the division \frac{16}{9} as the division of square roots \frac{\sqrt{16}}{\sqrt{9}}. Take the square root of both numerator and denominator.
sort(\frac{4}{3}-\sqrt{\left(\frac{3}{9}+\frac{1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Least common multiple of 3 and 9 is 9. Convert \frac{1}{3} and \frac{1}{9} to fractions with denominator 9.
sort(\frac{4}{3}-\sqrt{\left(\frac{3+1}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{3}{9} and \frac{1}{9} have the same denominator, add them by adding their numerators.
sort(\frac{4}{3}-\sqrt{\left(\frac{4}{9}+5\times \frac{1}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Add 3 and 1 to get 4.
sort(\frac{4}{3}-\sqrt{\left(\frac{4}{9}+\frac{5}{15}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Multiply 5 and \frac{1}{15} to get \frac{5}{15}.
sort(\frac{4}{3}-\sqrt{\left(\frac{4}{9}+\frac{1}{3}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
sort(\frac{4}{3}-\sqrt{\left(\frac{4}{9}+\frac{3}{9}\right)\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Least common multiple of 9 and 3 is 9. Convert \frac{4}{9} and \frac{1}{3} to fractions with denominator 9.
sort(\frac{4}{3}-\sqrt{\frac{4+3}{9}\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{4}{9} and \frac{3}{9} have the same denominator, add them by adding their numerators.
sort(\frac{4}{3}-\sqrt{\frac{7}{9}\left(\frac{2^{2}}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Add 4 and 3 to get 7.
sort(\frac{4}{3}-\sqrt{\frac{7}{9}\left(\frac{4}{3}-\frac{5}{3^{2}}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Calculate 2 to the power of 2 and get 4.
sort(\frac{4}{3}-\sqrt{\frac{7}{9}\left(\frac{4}{3}-\frac{5}{9}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Calculate 3 to the power of 2 and get 9.
sort(\frac{4}{3}-\sqrt{\frac{7}{9}\left(\frac{12}{9}-\frac{5}{9}\right)},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Least common multiple of 3 and 9 is 9. Convert \frac{4}{3} and \frac{5}{9} to fractions with denominator 9.
sort(\frac{4}{3}-\sqrt{\frac{7}{9}\times \frac{12-5}{9}},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{12}{9} and \frac{5}{9} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{4}{3}-\sqrt{\frac{7}{9}\times \frac{7}{9}},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Subtract 5 from 12 to get 7.
sort(\frac{4}{3}-\sqrt{\frac{7\times 7}{9\times 9}},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Multiply \frac{7}{9} times \frac{7}{9} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{4}{3}-\sqrt{\frac{49}{81}},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Do the multiplications in the fraction \frac{7\times 7}{9\times 9}.
sort(\frac{4}{3}-\frac{7}{9},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Rewrite the square root of the division \frac{49}{81} as the division of square roots \frac{\sqrt{49}}{\sqrt{81}}. Take the square root of both numerator and denominator.
sort(\frac{12}{9}-\frac{7}{9},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Least common multiple of 3 and 9 is 9. Convert \frac{4}{3} and \frac{7}{9} to fractions with denominator 9.
sort(\frac{12-7}{9},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Since \frac{12}{9} and \frac{7}{9} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{5}{9},\left(1+\frac{5}{2}\right)\times 1+2-1+35)
Subtract 7 from 12 to get 5.
sort(\frac{5}{9},\left(\frac{2}{2}+\frac{5}{2}\right)\times 1+2-1+35)
Convert 1 to fraction \frac{2}{2}.
sort(\frac{5}{9},\frac{2+5}{2}\times 1+2-1+35)
Since \frac{2}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
sort(\frac{5}{9},\frac{7}{2}\times 1+2-1+35)
Add 2 and 5 to get 7.
sort(\frac{5}{9},\frac{7}{2}+2-1+35)
Multiply \frac{7}{2} and 1 to get \frac{7}{2}.
sort(\frac{5}{9},\frac{7}{2}+\frac{4}{2}-1+35)
Convert 2 to fraction \frac{4}{2}.
sort(\frac{5}{9},\frac{7+4}{2}-1+35)
Since \frac{7}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
sort(\frac{5}{9},\frac{11}{2}-1+35)
Add 7 and 4 to get 11.
sort(\frac{5}{9},\frac{11}{2}-\frac{2}{2}+35)
Convert 1 to fraction \frac{2}{2}.
sort(\frac{5}{9},\frac{11-2}{2}+35)
Since \frac{11}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{5}{9},\frac{9}{2}+35)
Subtract 2 from 11 to get 9.
sort(\frac{5}{9},\frac{9}{2}+\frac{70}{2})
Convert 35 to fraction \frac{70}{2}.
sort(\frac{5}{9},\frac{9+70}{2})
Since \frac{9}{2} and \frac{70}{2} have the same denominator, add them by adding their numerators.
sort(\frac{5}{9},\frac{79}{2})
Add 9 and 70 to get 79.
\frac{10}{18},\frac{711}{18}
Least common denominator of the numbers in the list \frac{5}{9},\frac{79}{2} is 18. Convert numbers in the list to fractions with denominator 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}