\left. \begin{array} { l } { \lim \frac { 2 n ^ { 2 } - n + 3 } { 3 n ^ { 2 } + 2 n + 1 } } \\ { \lim \frac { n ^ { 4 } } { ( n + 1 ) ( 2 + n ) ( n ^ { 2 } + 1 ) } } \end{array} \right.
Evaluate
\left(Im(\frac{1}{3n^{2}+2n+1})\left(2Re(n^{2})-Re(n)+3\right)+Re(\frac{1}{3n^{2}+2n+1})\left(2Im(n^{2})-Im(n)\right)\right)l,\ \left(\left(\left(Re(\frac{1}{n^{2}+1})Im(\frac{1}{n+2})+Im(\frac{1}{n^{2}+1})Re(\frac{1}{n+2})\right)Re(\frac{1}{n+1})+\left(Re(\frac{1}{n^{2}+1})Re(\frac{1}{n+2})-Im(\frac{1}{n^{2}+1})Im(\frac{1}{n+2})\right)Im(\frac{1}{n+1})\right)Re(n^{4})+\left(-\left(Re(\frac{1}{n^{2}+1})Im(\frac{1}{n+2})+Im(\frac{1}{n^{2}+1})Re(\frac{1}{n+2})\right)Im(\frac{1}{n+1})+\left(Re(\frac{1}{n^{2}+1})Re(\frac{1}{n+2})-Im(\frac{1}{n^{2}+1})Im(\frac{1}{n+2})\right)Re(\frac{1}{n+1})\right)Im(n^{4})\right)l
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}