Solve for x, y
x = \frac{146}{3} = 48\frac{2}{3} \approx 48.666666667
y = \frac{439}{2} = 219\frac{1}{2} = 219.5
Graph
Share
Copied to clipboard
3\left(x-3\right)-\left(4+1\right)=132
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,6.
3x-9-\left(4+1\right)=132
Use the distributive property to multiply 3 by x-3.
3x-9-5=132
Add 4 and 1 to get 5.
3x-14=132
Subtract 5 from -9 to get -14.
3x=132+14
Add 14 to both sides.
3x=146
Add 132 and 14 to get 146.
x=\frac{146}{3}
Divide both sides by 3.
-9\times \frac{146}{3}+2y=1
Consider the second equation. Insert the known values of variables into the equation.
-438+2y=1
Multiply -9 and \frac{146}{3} to get -438.
2y=1+438
Add 438 to both sides.
2y=439
Add 1 and 438 to get 439.
y=\frac{439}{2}
Divide both sides by 2.
x=\frac{146}{3} y=\frac{439}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}