Solve for x, y
x=7
y=5
Graph
Share
Copied to clipboard
\frac{1}{6}\left(x-1\right)+y=6,x+\frac{1}{4}\left(y-1\right)=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{6}\left(x-1\right)+y=6
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{6}x-\frac{1}{6}+y=6
Multiply \frac{1}{6} times x-1.
\frac{1}{6}x+y=\frac{37}{6}
Add \frac{1}{6} to both sides of the equation.
\frac{1}{6}x=-y+\frac{37}{6}
Subtract y from both sides of the equation.
x=6\left(-y+\frac{37}{6}\right)
Multiply both sides by 6.
x=-6y+37
Multiply 6 times -y+\frac{37}{6}.
-6y+37+\frac{1}{4}\left(y-1\right)=8
Substitute -6y+37 for x in the other equation, x+\frac{1}{4}\left(y-1\right)=8.
-6y+37+\frac{1}{4}y-\frac{1}{4}=8
Multiply \frac{1}{4} times y-1.
-\frac{23}{4}y+37-\frac{1}{4}=8
Add -6y to \frac{y}{4}.
-\frac{23}{4}y+\frac{147}{4}=8
Add 37 to -\frac{1}{4}.
-\frac{23}{4}y=-\frac{115}{4}
Subtract \frac{147}{4} from both sides of the equation.
y=5
Divide both sides of the equation by -\frac{23}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-6\times 5+37
Substitute 5 for y in x=-6y+37. Because the resulting equation contains only one variable, you can solve for x directly.
x=-30+37
Multiply -6 times 5.
x=7
Add 37 to -30.
x=7,y=5
The system is now solved.
\frac{1}{6}\left(x-1\right)+y=6,x+\frac{1}{4}\left(y-1\right)=8
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{6}\left(x-1\right)+y=6
Simplify the first equation to put it in standard form.
\frac{1}{6}x-\frac{1}{6}+y=6
Multiply \frac{1}{6} times x-1.
\frac{1}{6}x+y=\frac{37}{6}
Add \frac{1}{6} to both sides of the equation.
x+\frac{1}{4}\left(y-1\right)=8
Simplify the second equation to put it in standard form.
x+\frac{1}{4}y-\frac{1}{4}=8
Multiply \frac{1}{4} times y-1.
x+\frac{1}{4}y=\frac{33}{4}
Add \frac{1}{4} to both sides of the equation.
\left(\begin{matrix}\frac{1}{6}&1\\1&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{37}{6}\\\frac{33}{4}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{6}&1\\1&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}&1\\1&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&1\\1&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}\frac{37}{6}\\\frac{33}{4}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{6}&1\\1&\frac{1}{4}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&1\\1&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}\frac{37}{6}\\\frac{33}{4}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&1\\1&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}\frac{37}{6}\\\frac{33}{4}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{\frac{1}{6}\times \frac{1}{4}-1}&-\frac{1}{\frac{1}{6}\times \frac{1}{4}-1}\\-\frac{1}{\frac{1}{6}\times \frac{1}{4}-1}&\frac{\frac{1}{6}}{\frac{1}{6}\times \frac{1}{4}-1}\end{matrix}\right)\left(\begin{matrix}\frac{37}{6}\\\frac{33}{4}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{23}&\frac{24}{23}\\\frac{24}{23}&-\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}\frac{37}{6}\\\frac{33}{4}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{23}\times \frac{37}{6}+\frac{24}{23}\times \frac{33}{4}\\\frac{24}{23}\times \frac{37}{6}-\frac{4}{23}\times \frac{33}{4}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
Do the arithmetic.
x=7,y=5
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}