Solve for x, y
x = -\frac{120}{43} = -2\frac{34}{43} \approx -2.790697674
y=14
Share
Copied to clipboard
120+120x\times \frac{2}{5}=5x
Consider the second equation. Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 120x, the least common multiple of x,5,24.
120+48x=5x
Multiply 120 and \frac{2}{5} to get 48.
120+48x-5x=0
Subtract 5x from both sides.
120+43x=0
Combine 48x and -5x to get 43x.
43x=-120
Subtract 120 from both sides. Anything subtracted from zero gives its negation.
x=-\frac{120}{43}
Divide both sides by 43.
\frac{-\frac{120}{43}}{-\frac{120}{43}}+y=15
Consider the first equation. Insert the known values of variables into the equation.
1+y=15
Divide -\frac{120}{43} by -\frac{120}{43} to get 1.
y=15-1
Subtract 1 from both sides.
y=14
Subtract 1 from 15 to get 14.
x=-\frac{120}{43} y=14
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}