Solve for x, y
x=8801.1
y=101
Graph
Share
Copied to clipboard
x=8.89\times 990
Consider the first equation. Multiply both sides by 990.
x=8801.1
Multiply 8.89 and 990 to get 8801.1.
\frac{8801.1}{990-y}=9.9
Consider the second equation. Insert the known values of variables into the equation.
8801.1=9.9\left(-y+990\right)
Variable y cannot be equal to 990 since division by zero is not defined. Multiply both sides of the equation by -y+990.
8801.1=-9.9y+9801
Use the distributive property to multiply 9.9 by -y+990.
-9.9y+9801=8801.1
Swap sides so that all variable terms are on the left hand side.
-9.9y=8801.1-9801
Subtract 9801 from both sides.
-9.9y=-999.9
Subtract 9801 from 8801.1 to get -999.9.
y=\frac{-999.9}{-9.9}
Divide both sides by -9.9.
y=\frac{-9999}{-99}
Expand \frac{-999.9}{-9.9} by multiplying both numerator and the denominator by 10.
y=101
Divide -9999 by -99 to get 101.
x=8801.1 y=101
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}