Solve for x, y
x = \frac{419612}{7269} = 57\frac{5279}{7269} \approx 57.726234695
y = \frac{417041}{7269} = 57\frac{2708}{7269} \approx 57.372540927
Graph
Share
Copied to clipboard
x+92y=5336
Consider the first equation. Multiply both sides of the equation by 92.
79x-y=4503
Consider the second equation. Multiply both sides of the equation by 79.
x+92y=5336,79x-y=4503
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+92y=5336
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-92y+5336
Subtract 92y from both sides of the equation.
79\left(-92y+5336\right)-y=4503
Substitute -92y+5336 for x in the other equation, 79x-y=4503.
-7268y+421544-y=4503
Multiply 79 times -92y+5336.
-7269y+421544=4503
Add -7268y to -y.
-7269y=-417041
Subtract 421544 from both sides of the equation.
y=\frac{417041}{7269}
Divide both sides by -7269.
x=-92\times \frac{417041}{7269}+5336
Substitute \frac{417041}{7269} for y in x=-92y+5336. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{38367772}{7269}+5336
Multiply -92 times \frac{417041}{7269}.
x=\frac{419612}{7269}
Add 5336 to -\frac{38367772}{7269}.
x=\frac{419612}{7269},y=\frac{417041}{7269}
The system is now solved.
x+92y=5336
Consider the first equation. Multiply both sides of the equation by 92.
79x-y=4503
Consider the second equation. Multiply both sides of the equation by 79.
x+92y=5336,79x-y=4503
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&92\\79&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5336\\4503\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}1&92\\79&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}5336\\4503\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&92\\79&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}5336\\4503\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}5336\\4503\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-92\times 79}&-\frac{92}{-1-92\times 79}\\-\frac{79}{-1-92\times 79}&\frac{1}{-1-92\times 79}\end{matrix}\right)\left(\begin{matrix}5336\\4503\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7269}&\frac{92}{7269}\\\frac{79}{7269}&-\frac{1}{7269}\end{matrix}\right)\left(\begin{matrix}5336\\4503\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7269}\times 5336+\frac{92}{7269}\times 4503\\\frac{79}{7269}\times 5336-\frac{1}{7269}\times 4503\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{419612}{7269}\\\frac{417041}{7269}\end{matrix}\right)
Do the arithmetic.
x=\frac{419612}{7269},y=\frac{417041}{7269}
Extract the matrix elements x and y.
x+92y=5336
Consider the first equation. Multiply both sides of the equation by 92.
79x-y=4503
Consider the second equation. Multiply both sides of the equation by 79.
x+92y=5336,79x-y=4503
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
79x+79\times 92y=79\times 5336,79x-y=4503
To make x and 79x equal, multiply all terms on each side of the first equation by 79 and all terms on each side of the second by 1.
79x+7268y=421544,79x-y=4503
Simplify.
79x-79x+7268y+y=421544-4503
Subtract 79x-y=4503 from 79x+7268y=421544 by subtracting like terms on each side of the equal sign.
7268y+y=421544-4503
Add 79x to -79x. Terms 79x and -79x cancel out, leaving an equation with only one variable that can be solved.
7269y=421544-4503
Add 7268y to y.
7269y=417041
Add 421544 to -4503.
y=\frac{417041}{7269}
Divide both sides by 7269.
79x-\frac{417041}{7269}=4503
Substitute \frac{417041}{7269} for y in 79x-y=4503. Because the resulting equation contains only one variable, you can solve for x directly.
79x=\frac{33149348}{7269}
Add \frac{417041}{7269} to both sides of the equation.
x=\frac{419612}{7269}
Divide both sides by 79.
x=\frac{419612}{7269},y=\frac{417041}{7269}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}