Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{61}x+y=91,x+\frac{1}{37}y=77
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{61}x+y=91
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{61}x=-y+91
Subtract y from both sides of the equation.
x=61\left(-y+91\right)
Multiply both sides by 61.
x=-61y+5551
Multiply 61 times -y+91.
-61y+5551+\frac{1}{37}y=77
Substitute -61y+5551 for x in the other equation, x+\frac{1}{37}y=77.
-\frac{2256}{37}y+5551=77
Add -61y to \frac{y}{37}.
-\frac{2256}{37}y=-5474
Subtract 5551 from both sides of the equation.
y=\frac{101269}{1128}
Divide both sides of the equation by -\frac{2256}{37}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-61\times \frac{101269}{1128}+5551
Substitute \frac{101269}{1128} for y in x=-61y+5551. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{6177409}{1128}+5551
Multiply -61 times \frac{101269}{1128}.
x=\frac{84119}{1128}
Add 5551 to -\frac{6177409}{1128}.
x=\frac{84119}{1128},y=\frac{101269}{1128}
The system is now solved.
\frac{1}{61}x+y=91,x+\frac{1}{37}y=77
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{1}{61}&1\\1&\frac{1}{37}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}91\\77\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{61}&1\\1&\frac{1}{37}\end{matrix}\right))\left(\begin{matrix}\frac{1}{61}&1\\1&\frac{1}{37}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{61}&1\\1&\frac{1}{37}\end{matrix}\right))\left(\begin{matrix}91\\77\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{61}&1\\1&\frac{1}{37}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{61}&1\\1&\frac{1}{37}\end{matrix}\right))\left(\begin{matrix}91\\77\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{61}&1\\1&\frac{1}{37}\end{matrix}\right))\left(\begin{matrix}91\\77\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{37}}{\frac{1}{61}\times \frac{1}{37}-1}&-\frac{1}{\frac{1}{61}\times \frac{1}{37}-1}\\-\frac{1}{\frac{1}{61}\times \frac{1}{37}-1}&\frac{\frac{1}{61}}{\frac{1}{61}\times \frac{1}{37}-1}\end{matrix}\right)\left(\begin{matrix}91\\77\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{61}{2256}&\frac{2257}{2256}\\\frac{2257}{2256}&-\frac{37}{2256}\end{matrix}\right)\left(\begin{matrix}91\\77\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{61}{2256}\times 91+\frac{2257}{2256}\times 77\\\frac{2257}{2256}\times 91-\frac{37}{2256}\times 77\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{84119}{1128}\\\frac{101269}{1128}\end{matrix}\right)
Do the arithmetic.
x=\frac{84119}{1128},y=\frac{101269}{1128}
Extract the matrix elements x and y.
\frac{1}{61}x+y=91,x+\frac{1}{37}y=77
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{61}x+y=91,\frac{1}{61}x+\frac{1}{61}\times \frac{1}{37}y=\frac{1}{61}\times 77
To make \frac{x}{61} and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by \frac{1}{61}.
\frac{1}{61}x+y=91,\frac{1}{61}x+\frac{1}{2257}y=\frac{77}{61}
Simplify.
\frac{1}{61}x-\frac{1}{61}x+y-\frac{1}{2257}y=91-\frac{77}{61}
Subtract \frac{1}{61}x+\frac{1}{2257}y=\frac{77}{61} from \frac{1}{61}x+y=91 by subtracting like terms on each side of the equal sign.
y-\frac{1}{2257}y=91-\frac{77}{61}
Add \frac{x}{61} to -\frac{x}{61}. Terms \frac{x}{61} and -\frac{x}{61} cancel out, leaving an equation with only one variable that can be solved.
\frac{2256}{2257}y=91-\frac{77}{61}
Add y to -\frac{y}{2257}.
\frac{2256}{2257}y=\frac{5474}{61}
Add 91 to -\frac{77}{61}.
y=\frac{101269}{1128}
Divide both sides of the equation by \frac{2256}{2257}, which is the same as multiplying both sides by the reciprocal of the fraction.
x+\frac{1}{37}\times \frac{101269}{1128}=77
Substitute \frac{101269}{1128} for y in x+\frac{1}{37}y=77. Because the resulting equation contains only one variable, you can solve for x directly.
x+\frac{2737}{1128}=77
Multiply \frac{1}{37} times \frac{101269}{1128} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{84119}{1128}
Subtract \frac{2737}{1128} from both sides of the equation.
x=\frac{84119}{1128},y=\frac{101269}{1128}
The system is now solved.