Solve for x, y
x = \frac{10764}{719} = 14\frac{698}{719} \approx 14.970792768
y = -\frac{14800}{719} = -20\frac{420}{719} \approx -20.584144645
Graph
Share
Copied to clipboard
x-36y=756
Consider the first equation. Multiply both sides of the equation by 36.
20x-y=320
Consider the second equation. Multiply both sides of the equation by 20.
x-36y=756,20x-y=320
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-36y=756
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=36y+756
Add 36y to both sides of the equation.
20\left(36y+756\right)-y=320
Substitute 756+36y for x in the other equation, 20x-y=320.
720y+15120-y=320
Multiply 20 times 756+36y.
719y+15120=320
Add 720y to -y.
719y=-14800
Subtract 15120 from both sides of the equation.
y=-\frac{14800}{719}
Divide both sides by 719.
x=36\left(-\frac{14800}{719}\right)+756
Substitute -\frac{14800}{719} for y in x=36y+756. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{532800}{719}+756
Multiply 36 times -\frac{14800}{719}.
x=\frac{10764}{719}
Add 756 to -\frac{532800}{719}.
x=\frac{10764}{719},y=-\frac{14800}{719}
The system is now solved.
x-36y=756
Consider the first equation. Multiply both sides of the equation by 36.
20x-y=320
Consider the second equation. Multiply both sides of the equation by 20.
x-36y=756,20x-y=320
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}756\\320\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right))\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right))\left(\begin{matrix}756\\320\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-36\\20&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right))\left(\begin{matrix}756\\320\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right))\left(\begin{matrix}756\\320\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-36\times 20\right)}&-\frac{-36}{-1-\left(-36\times 20\right)}\\-\frac{20}{-1-\left(-36\times 20\right)}&\frac{1}{-1-\left(-36\times 20\right)}\end{matrix}\right)\left(\begin{matrix}756\\320\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{719}&\frac{36}{719}\\-\frac{20}{719}&\frac{1}{719}\end{matrix}\right)\left(\begin{matrix}756\\320\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{719}\times 756+\frac{36}{719}\times 320\\-\frac{20}{719}\times 756+\frac{1}{719}\times 320\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10764}{719}\\-\frac{14800}{719}\end{matrix}\right)
Do the arithmetic.
x=\frac{10764}{719},y=-\frac{14800}{719}
Extract the matrix elements x and y.
x-36y=756
Consider the first equation. Multiply both sides of the equation by 36.
20x-y=320
Consider the second equation. Multiply both sides of the equation by 20.
x-36y=756,20x-y=320
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20x+20\left(-36\right)y=20\times 756,20x-y=320
To make x and 20x equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 1.
20x-720y=15120,20x-y=320
Simplify.
20x-20x-720y+y=15120-320
Subtract 20x-y=320 from 20x-720y=15120 by subtracting like terms on each side of the equal sign.
-720y+y=15120-320
Add 20x to -20x. Terms 20x and -20x cancel out, leaving an equation with only one variable that can be solved.
-719y=15120-320
Add -720y to y.
-719y=14800
Add 15120 to -320.
y=-\frac{14800}{719}
Divide both sides by -719.
20x-\left(-\frac{14800}{719}\right)=320
Substitute -\frac{14800}{719} for y in 20x-y=320. Because the resulting equation contains only one variable, you can solve for x directly.
20x=\frac{215280}{719}
Subtract \frac{14800}{719} from both sides of the equation.
x=\frac{10764}{719}
Divide both sides by 20.
x=\frac{10764}{719},y=-\frac{14800}{719}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}