Solve for x, y
x = \frac{190806}{2903} = 65\frac{2111}{2903} \approx 65.727178781
y = -\frac{69696}{2903} = -24\frac{24}{2903} \approx -24.00826731
Graph
Share
Copied to clipboard
x-33y=858
Consider the first equation. Multiply both sides of the equation by 33.
88x-y=5808
Consider the second equation. Multiply both sides of the equation by 88.
x-33y=858,88x-y=5808
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-33y=858
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=33y+858
Add 33y to both sides of the equation.
88\left(33y+858\right)-y=5808
Substitute 858+33y for x in the other equation, 88x-y=5808.
2904y+75504-y=5808
Multiply 88 times 858+33y.
2903y+75504=5808
Add 2904y to -y.
2903y=-69696
Subtract 75504 from both sides of the equation.
y=-\frac{69696}{2903}
Divide both sides by 2903.
x=33\left(-\frac{69696}{2903}\right)+858
Substitute -\frac{69696}{2903} for y in x=33y+858. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{2299968}{2903}+858
Multiply 33 times -\frac{69696}{2903}.
x=\frac{190806}{2903}
Add 858 to -\frac{2299968}{2903}.
x=\frac{190806}{2903},y=-\frac{69696}{2903}
The system is now solved.
x-33y=858
Consider the first equation. Multiply both sides of the equation by 33.
88x-y=5808
Consider the second equation. Multiply both sides of the equation by 88.
x-33y=858,88x-y=5808
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}858\\5808\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-33\\88&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-33\times 88\right)}&-\frac{-33}{-1-\left(-33\times 88\right)}\\-\frac{88}{-1-\left(-33\times 88\right)}&\frac{1}{-1-\left(-33\times 88\right)}\end{matrix}\right)\left(\begin{matrix}858\\5808\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2903}&\frac{33}{2903}\\-\frac{88}{2903}&\frac{1}{2903}\end{matrix}\right)\left(\begin{matrix}858\\5808\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2903}\times 858+\frac{33}{2903}\times 5808\\-\frac{88}{2903}\times 858+\frac{1}{2903}\times 5808\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{190806}{2903}\\-\frac{69696}{2903}\end{matrix}\right)
Do the arithmetic.
x=\frac{190806}{2903},y=-\frac{69696}{2903}
Extract the matrix elements x and y.
x-33y=858
Consider the first equation. Multiply both sides of the equation by 33.
88x-y=5808
Consider the second equation. Multiply both sides of the equation by 88.
x-33y=858,88x-y=5808
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
88x+88\left(-33\right)y=88\times 858,88x-y=5808
To make x and 88x equal, multiply all terms on each side of the first equation by 88 and all terms on each side of the second by 1.
88x-2904y=75504,88x-y=5808
Simplify.
88x-88x-2904y+y=75504-5808
Subtract 88x-y=5808 from 88x-2904y=75504 by subtracting like terms on each side of the equal sign.
-2904y+y=75504-5808
Add 88x to -88x. Terms 88x and -88x cancel out, leaving an equation with only one variable that can be solved.
-2903y=75504-5808
Add -2904y to y.
-2903y=69696
Add 75504 to -5808.
y=-\frac{69696}{2903}
Divide both sides by -2903.
88x-\left(-\frac{69696}{2903}\right)=5808
Substitute -\frac{69696}{2903} for y in 88x-y=5808. Because the resulting equation contains only one variable, you can solve for x directly.
88x=\frac{16790928}{2903}
Subtract \frac{69696}{2903} from both sides of the equation.
x=\frac{190806}{2903}
Divide both sides by 88.
x=\frac{190806}{2903},y=-\frac{69696}{2903}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}