Solve for x, y
x=12
y=15
Graph
Share
Copied to clipboard
5x+3y=105
Consider the first equation. Multiply both sides of the equation by 15, the least common multiple of 3,5.
5x-6\times 2y=-120
Consider the second equation. Multiply both sides of the equation by 30, the least common multiple of 6,5.
5x-12y=-120
Multiply -6 and 2 to get -12.
5x+3y=105,5x-12y=-120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+3y=105
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-3y+105
Subtract 3y from both sides of the equation.
x=\frac{1}{5}\left(-3y+105\right)
Divide both sides by 5.
x=-\frac{3}{5}y+21
Multiply \frac{1}{5} times -3y+105.
5\left(-\frac{3}{5}y+21\right)-12y=-120
Substitute -\frac{3y}{5}+21 for x in the other equation, 5x-12y=-120.
-3y+105-12y=-120
Multiply 5 times -\frac{3y}{5}+21.
-15y+105=-120
Add -3y to -12y.
-15y=-225
Subtract 105 from both sides of the equation.
y=15
Divide both sides by -15.
x=-\frac{3}{5}\times 15+21
Substitute 15 for y in x=-\frac{3}{5}y+21. Because the resulting equation contains only one variable, you can solve for x directly.
x=-9+21
Multiply -\frac{3}{5} times 15.
x=12
Add 21 to -9.
x=12,y=15
The system is now solved.
5x+3y=105
Consider the first equation. Multiply both sides of the equation by 15, the least common multiple of 3,5.
5x-6\times 2y=-120
Consider the second equation. Multiply both sides of the equation by 30, the least common multiple of 6,5.
5x-12y=-120
Multiply -6 and 2 to get -12.
5x+3y=105,5x-12y=-120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&3\\5&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}105\\-120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}5&3\\5&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}105\\-120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&3\\5&-12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}105\\-120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}105\\-120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{5\left(-12\right)-3\times 5}&-\frac{3}{5\left(-12\right)-3\times 5}\\-\frac{5}{5\left(-12\right)-3\times 5}&\frac{5}{5\left(-12\right)-3\times 5}\end{matrix}\right)\left(\begin{matrix}105\\-120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{1}{25}\\\frac{1}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}105\\-120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 105+\frac{1}{25}\left(-120\right)\\\frac{1}{15}\times 105-\frac{1}{15}\left(-120\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\15\end{matrix}\right)
Do the arithmetic.
x=12,y=15
Extract the matrix elements x and y.
5x+3y=105
Consider the first equation. Multiply both sides of the equation by 15, the least common multiple of 3,5.
5x-6\times 2y=-120
Consider the second equation. Multiply both sides of the equation by 30, the least common multiple of 6,5.
5x-12y=-120
Multiply -6 and 2 to get -12.
5x+3y=105,5x-12y=-120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5x-5x+3y+12y=105+120
Subtract 5x-12y=-120 from 5x+3y=105 by subtracting like terms on each side of the equal sign.
3y+12y=105+120
Add 5x to -5x. Terms 5x and -5x cancel out, leaving an equation with only one variable that can be solved.
15y=105+120
Add 3y to 12y.
15y=225
Add 105 to 120.
y=15
Divide both sides by 15.
5x-12\times 15=-120
Substitute 15 for y in 5x-12y=-120. Because the resulting equation contains only one variable, you can solve for x directly.
5x-180=-120
Multiply -12 times 15.
5x=60
Add 180 to both sides of the equation.
x=12
Divide both sides by 5.
x=12,y=15
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}