Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

4x+6y+3z=24 3x+4y-6z=2 6x-3y+4z=46
Multiply each equation by the least common multiple of denominators in it. Simplify.
x=6-\frac{3}{2}y-\frac{3}{4}z
Solve 4x+6y+3z=24 for x.
3\left(6-\frac{3}{2}y-\frac{3}{4}z\right)+4y-6z=2 6\left(6-\frac{3}{2}y-\frac{3}{4}z\right)-3y+4z=46
Substitute 6-\frac{3}{2}y-\frac{3}{4}z for x in the second and third equation.
y=32-\frac{33}{2}z z=-20-24y
Solve these equations for y and z respectively.
z=-20-24\left(32-\frac{33}{2}z\right)
Substitute 32-\frac{33}{2}z for y in the equation z=-20-24y.
z=\frac{788}{395}
Solve z=-20-24\left(32-\frac{33}{2}z\right) for z.
y=32-\frac{33}{2}\times \frac{788}{395}
Substitute \frac{788}{395} for z in the equation y=32-\frac{33}{2}z.
y=-\frac{362}{395}
Calculate y from y=32-\frac{33}{2}\times \frac{788}{395}.
x=6-\frac{3}{2}\left(-\frac{362}{395}\right)-\frac{3}{4}\times \frac{788}{395}
Substitute -\frac{362}{395} for y and \frac{788}{395} for z in the equation x=6-\frac{3}{2}y-\frac{3}{4}z.
x=\frac{2322}{395}
Calculate x from x=6-\frac{3}{2}\left(-\frac{362}{395}\right)-\frac{3}{4}\times \frac{788}{395}.
x=\frac{2322}{395} y=-\frac{362}{395} z=\frac{788}{395}
The system is now solved.