Solve for x, y, z
x = \frac{2322}{395} = 5\frac{347}{395} \approx 5.878481013
y=-\frac{362}{395}\approx -0.916455696
z = \frac{788}{395} = 1\frac{393}{395} \approx 1.994936709
Share
Copied to clipboard
4x+6y+3z=24 3x+4y-6z=2 6x-3y+4z=46
Multiply each equation by the least common multiple of denominators in it. Simplify.
x=6-\frac{3}{2}y-\frac{3}{4}z
Solve 4x+6y+3z=24 for x.
3\left(6-\frac{3}{2}y-\frac{3}{4}z\right)+4y-6z=2 6\left(6-\frac{3}{2}y-\frac{3}{4}z\right)-3y+4z=46
Substitute 6-\frac{3}{2}y-\frac{3}{4}z for x in the second and third equation.
y=32-\frac{33}{2}z z=-20-24y
Solve these equations for y and z respectively.
z=-20-24\left(32-\frac{33}{2}z\right)
Substitute 32-\frac{33}{2}z for y in the equation z=-20-24y.
z=\frac{788}{395}
Solve z=-20-24\left(32-\frac{33}{2}z\right) for z.
y=32-\frac{33}{2}\times \frac{788}{395}
Substitute \frac{788}{395} for z in the equation y=32-\frac{33}{2}z.
y=-\frac{362}{395}
Calculate y from y=32-\frac{33}{2}\times \frac{788}{395}.
x=6-\frac{3}{2}\left(-\frac{362}{395}\right)-\frac{3}{4}\times \frac{788}{395}
Substitute -\frac{362}{395} for y and \frac{788}{395} for z in the equation x=6-\frac{3}{2}y-\frac{3}{4}z.
x=\frac{2322}{395}
Calculate x from x=6-\frac{3}{2}\left(-\frac{362}{395}\right)-\frac{3}{4}\times \frac{788}{395}.
x=\frac{2322}{395} y=-\frac{362}{395} z=\frac{788}{395}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}