Solve for x, y
\left\{\begin{matrix}x=-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}\text{, }y=\frac{2\left(-\sqrt{ab\left(4a+b-36\right)}+3b\right)}{4a+b}\text{; }x=\frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}\text{, }y=\frac{2\left(\sqrt{ab\left(4a+b-36\right)}+3b\right)}{4a+b}\text{, }&\left(a\geq -\frac{b}{4}+9\text{ and }a>0\text{ and }b>0\right)\text{ or }\left(a=-\frac{b}{4}+9\text{ and }b\neq 0\text{ and }b<36\right)\text{ or }\left(a\neq -\frac{b}{4}\text{ and }a\leq -\frac{b}{4}+9\text{ and }b<0\text{ and }a>0\right)\text{ or }\left(a=-\frac{b}{4}+9\text{ and }b>0\text{ and }b\neq 36\right)\text{ or }\left(a\neq -\frac{b}{4}\text{ and }a\leq -\frac{b}{4}+9\text{ and }a<0\text{ and }b>0\right)\\x=\frac{b-36}{24}\text{, }y=\frac{b+36}{12}\text{, }&a=-\frac{b}{4}\text{ and }b\neq 0\end{matrix}\right.
Solve for x, y (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}\text{, }y=\frac{2\left(-\sqrt{ab\left(4a+b-36\right)}+3b\right)}{4a+b}\text{; }x=\frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}\text{, }y=\frac{2\left(\sqrt{ab\left(4a+b-36\right)}+3b\right)}{4a+b}\text{, }&a\neq -\frac{b}{4}\text{ and }a\neq 0\text{ and }b\neq 0\\x=\frac{b-36}{24}\text{, }y=\frac{b+36}{12}\text{, }&a=-\frac{b}{4}\text{ and }b\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
bx^{2}+ay^{2}=ab
Consider the first equation. Multiply both sides of the equation by ab, the least common multiple of a,b.
y-2x=6
Consider the second equation. Subtract 2x from both sides.
y-2x=6,bx^{2}+ay^{2}=ab
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-2x=6
Solve y-2x=6 for y by isolating y on the left hand side of the equal sign.
y=2x+6
Subtract -2x from both sides of the equation.
bx^{2}+a\left(2x+6\right)^{2}=ab
Substitute 2x+6 for y in the other equation, bx^{2}+ay^{2}=ab.
bx^{2}+a\left(4x^{2}+24x+36\right)=ab
Square 2x+6.
bx^{2}+4ax^{2}+24ax+36a=ab
Multiply a times 4x^{2}+24x+36.
\left(4a+b\right)x^{2}+24ax+36a=ab
Add bx^{2} to 4ax^{2}.
\left(4a+b\right)x^{2}+24ax+36a-ab=0
Subtract ab from both sides of the equation.
x=\frac{-24a±\sqrt{\left(24a\right)^{2}-4\left(4a+b\right)a\left(36-b\right)}}{2\left(4a+b\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute b+a\times 2^{2} for a, a\times 6\times 2\times 2 for b, and a\left(36-b\right) for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24a±\sqrt{576a^{2}-4\left(4a+b\right)a\left(36-b\right)}}{2\left(4a+b\right)}
Square a\times 6\times 2\times 2.
x=\frac{-24a±\sqrt{576a^{2}+\left(-16a-4b\right)a\left(36-b\right)}}{2\left(4a+b\right)}
Multiply -4 times b+a\times 2^{2}.
x=\frac{-24a±\sqrt{576a^{2}-4a\left(36-b\right)\left(4a+b\right)}}{2\left(4a+b\right)}
Multiply -4b-16a times a\left(36-b\right).
x=\frac{-24a±\sqrt{4ab\left(4a+b-36\right)}}{2\left(4a+b\right)}
Add 576a^{2} to -4\left(b+4a\right)a\left(36-b\right).
x=\frac{-24a±2\sqrt{ab\left(4a+b-36\right)}}{2\left(4a+b\right)}
Take the square root of 4ab\left(-36+4a+b\right).
x=\frac{-24a±2\sqrt{ab\left(4a+b-36\right)}}{8a+2b}
Multiply 2 times b+a\times 2^{2}.
x=\frac{2\sqrt{ab\left(4a+b-36\right)}-24a}{8a+2b}
Now solve the equation x=\frac{-24a±2\sqrt{ab\left(4a+b-36\right)}}{8a+2b} when ± is plus. Add -24a to 2\sqrt{ab\left(-36+4a+b\right)}.
x=\frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}
Divide -24a+2\sqrt{ab\left(-36+4a+b\right)} by 2b+8a.
x=\frac{-2\sqrt{ab\left(4a+b-36\right)}-24a}{8a+2b}
Now solve the equation x=\frac{-24a±2\sqrt{ab\left(4a+b-36\right)}}{8a+2b} when ± is minus. Subtract 2\sqrt{ab\left(-36+4a+b\right)} from -24a.
x=-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}
Divide -24a-2\sqrt{ab\left(-36+4a+b\right)} by 2b+8a.
y=2\times \frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}+6
There are two solutions for x: \frac{-12a+\sqrt{ab\left(-36+4a+b\right)}}{b+4a} and -\frac{12a+\sqrt{ab\left(-36+4a+b\right)}}{b+4a}. Substitute \frac{-12a+\sqrt{ab\left(-36+4a+b\right)}}{b+4a} for x in the equation y=2x+6 to find the corresponding solution for y that satisfies both equations.
y=2\left(-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}\right)+6
Now substitute -\frac{12a+\sqrt{ab\left(-36+4a+b\right)}}{b+4a} for x in the equation y=2x+6 and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}+6,x=\frac{\sqrt{ab\left(4a+b-36\right)}-12a}{4a+b}\text{ or }y=2\left(-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}\right)+6,x=-\frac{\sqrt{ab\left(4a+b-36\right)}+12a}{4a+b}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}