Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+9y^{2}=36
Consider the first equation. Multiply both sides of the equation by 36, the least common multiple of 9,4.
3x+4y=1,9y^{2}+4x^{2}=36
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y=1
Solve 3x+4y=1 for x by isolating x on the left hand side of the equal sign.
3x=-4y+1
Subtract 4y from both sides of the equation.
x=-\frac{4}{3}y+\frac{1}{3}
Divide both sides by 3.
9y^{2}+4\left(-\frac{4}{3}y+\frac{1}{3}\right)^{2}=36
Substitute -\frac{4}{3}y+\frac{1}{3} for x in the other equation, 9y^{2}+4x^{2}=36.
9y^{2}+4\left(\frac{16}{9}y^{2}-\frac{8}{9}y+\frac{1}{9}\right)=36
Square -\frac{4}{3}y+\frac{1}{3}.
9y^{2}+\frac{64}{9}y^{2}-\frac{32}{9}y+\frac{4}{9}=36
Multiply 4 times \frac{16}{9}y^{2}-\frac{8}{9}y+\frac{1}{9}.
\frac{145}{9}y^{2}-\frac{32}{9}y+\frac{4}{9}=36
Add 9y^{2} to \frac{64}{9}y^{2}.
\frac{145}{9}y^{2}-\frac{32}{9}y-\frac{320}{9}=0
Subtract 36 from both sides of the equation.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{\left(-\frac{32}{9}\right)^{2}-4\times \frac{145}{9}\left(-\frac{320}{9}\right)}}{2\times \frac{145}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9+4\left(-\frac{4}{3}\right)^{2} for a, 4\times \frac{1}{3}\left(-\frac{4}{3}\right)\times 2 for b, and -\frac{320}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{\frac{1024}{81}-4\times \frac{145}{9}\left(-\frac{320}{9}\right)}}{2\times \frac{145}{9}}
Square 4\times \frac{1}{3}\left(-\frac{4}{3}\right)\times 2.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{\frac{1024}{81}-\frac{580}{9}\left(-\frac{320}{9}\right)}}{2\times \frac{145}{9}}
Multiply -4 times 9+4\left(-\frac{4}{3}\right)^{2}.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{\frac{1024+185600}{81}}}{2\times \frac{145}{9}}
Multiply -\frac{580}{9} times -\frac{320}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{2304}}{2\times \frac{145}{9}}
Add \frac{1024}{81} to \frac{185600}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{32}{9}\right)±48}{2\times \frac{145}{9}}
Take the square root of 2304.
y=\frac{\frac{32}{9}±48}{2\times \frac{145}{9}}
The opposite of 4\times \frac{1}{3}\left(-\frac{4}{3}\right)\times 2 is \frac{32}{9}.
y=\frac{\frac{32}{9}±48}{\frac{290}{9}}
Multiply 2 times 9+4\left(-\frac{4}{3}\right)^{2}.
y=\frac{\frac{464}{9}}{\frac{290}{9}}
Now solve the equation y=\frac{\frac{32}{9}±48}{\frac{290}{9}} when ± is plus. Add \frac{32}{9} to 48.
y=\frac{8}{5}
Divide \frac{464}{9} by \frac{290}{9} by multiplying \frac{464}{9} by the reciprocal of \frac{290}{9}.
y=-\frac{\frac{400}{9}}{\frac{290}{9}}
Now solve the equation y=\frac{\frac{32}{9}±48}{\frac{290}{9}} when ± is minus. Subtract 48 from \frac{32}{9}.
y=-\frac{40}{29}
Divide -\frac{400}{9} by \frac{290}{9} by multiplying -\frac{400}{9} by the reciprocal of \frac{290}{9}.
x=-\frac{4}{3}\times \frac{8}{5}+\frac{1}{3}
There are two solutions for y: \frac{8}{5} and -\frac{40}{29}. Substitute \frac{8}{5} for y in the equation x=-\frac{4}{3}y+\frac{1}{3} to find the corresponding solution for x that satisfies both equations.
x=-\frac{32}{15}+\frac{1}{3}
Multiply -\frac{4}{3} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{9}{5}
Add -\frac{4}{3}\times \frac{8}{5} to \frac{1}{3}.
x=-\frac{4}{3}\left(-\frac{40}{29}\right)+\frac{1}{3}
Now substitute -\frac{40}{29} for y in the equation x=-\frac{4}{3}y+\frac{1}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{160}{87}+\frac{1}{3}
Multiply -\frac{4}{3} times -\frac{40}{29} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{63}{29}
Add -\frac{40}{29}\left(-\frac{4}{3}\right) to \frac{1}{3}.
x=-\frac{9}{5},y=\frac{8}{5}\text{ or }x=\frac{63}{29},y=-\frac{40}{29}
The system is now solved.