Solve for x, y
x=-\frac{2\sqrt{6}}{3}\approx -1.632993162\text{, }y=-\frac{\sqrt{3}}{3}\approx -0.577350269
x=\frac{2\sqrt{6}}{3}\approx 1.632993162\text{, }y=\frac{\sqrt{3}}{3}\approx 0.577350269
Graph
Share
Copied to clipboard
x^{2}+4y^{2}=4
Consider the first equation. Multiply both sides of the equation by 4.
y=\frac{\sqrt{2}x}{4}
Consider the second equation. Express \frac{\sqrt{2}}{4}x as a single fraction.
y-\frac{\sqrt{2}x}{4}=0
Subtract \frac{\sqrt{2}x}{4} from both sides.
4y-\sqrt{2}x=0
Multiply both sides of the equation by 4.
-\sqrt{2}x+4y=0
Reorder the terms.
\left(-\sqrt{2}\right)x+4y=0,4y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(-\sqrt{2}\right)x+4y=0
Solve \left(-\sqrt{2}\right)x+4y=0 for x by isolating x on the left hand side of the equal sign.
\left(-\sqrt{2}\right)x=-4y
Subtract 4y from both sides of the equation.
x=2\sqrt{2}y
Divide both sides by -\sqrt{2}.
4y^{2}+\left(2\sqrt{2}y\right)^{2}=4
Substitute 2\sqrt{2}y for x in the other equation, 4y^{2}+x^{2}=4.
4y^{2}+\left(2\sqrt{2}\right)^{2}y^{2}=4
Square 2\sqrt{2}y.
\left(\left(2\sqrt{2}\right)^{2}+4\right)y^{2}=4
Add 4y^{2} to \left(2\sqrt{2}\right)^{2}y^{2}.
\left(\left(2\sqrt{2}\right)^{2}+4\right)y^{2}-4=0
Subtract 4 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\left(\left(2\sqrt{2}\right)^{2}+4\right)\left(-4\right)}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4+1\times \left(2\sqrt{2}\right)^{2} for a, 1\times 0\times 2\times 2\sqrt{2} for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(\left(2\sqrt{2}\right)^{2}+4\right)\left(-4\right)}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
Square 1\times 0\times 2\times 2\sqrt{2}.
y=\frac{0±\sqrt{-48\left(-4\right)}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
Multiply -4 times 4+1\times \left(2\sqrt{2}\right)^{2}.
y=\frac{0±\sqrt{192}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
Multiply -48 times -4.
y=\frac{0±8\sqrt{3}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
Take the square root of 192.
y=\frac{0±8\sqrt{3}}{24}
Multiply 2 times 4+1\times \left(2\sqrt{2}\right)^{2}.
y=\frac{\sqrt{3}}{3}
Now solve the equation y=\frac{0±8\sqrt{3}}{24} when ± is plus.
y=-\frac{\sqrt{3}}{3}
Now solve the equation y=\frac{0±8\sqrt{3}}{24} when ± is minus.
x=2\sqrt{2}\times \frac{\sqrt{3}}{3}
There are two solutions for y: \frac{\sqrt{3}}{3} and -\frac{\sqrt{3}}{3}. Substitute \frac{\sqrt{3}}{3} for y in the equation x=2\sqrt{2}y to find the corresponding solution for x that satisfies both equations.
x=2\sqrt{2}\left(-\frac{\sqrt{3}}{3}\right)
Now substitute -\frac{\sqrt{3}}{3} for y in the equation x=2\sqrt{2}y and solve to find the corresponding solution for x that satisfies both equations.
x=2\sqrt{2}\times \frac{\sqrt{3}}{3},y=\frac{\sqrt{3}}{3}\text{ or }x=2\sqrt{2}\left(-\frac{\sqrt{3}}{3}\right),y=-\frac{\sqrt{3}}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}