Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+4y^{2}=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
y=\frac{-\sqrt{3}x}{3}-\frac{\sqrt{3}}{3}
Consider the second equation. Express \left(-\frac{\sqrt{3}}{3}\right)x as a single fraction.
y=\frac{-\sqrt{3}x-\sqrt{3}}{3}
Since \frac{-\sqrt{3}x}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
y-\frac{-\sqrt{3}x-\sqrt{3}}{3}=0
Subtract \frac{-\sqrt{3}x-\sqrt{3}}{3} from both sides.
3y-\left(-\sqrt{3}x-\sqrt{3}\right)=0
Multiply both sides of the equation by 3.
3y+\sqrt{3}x+\sqrt{3}=0
To find the opposite of -\sqrt{3}x-\sqrt{3}, find the opposite of each term.
3y+\sqrt{3}x=-\sqrt{3}
Subtract \sqrt{3} from both sides. Anything subtracted from zero gives its negation.
3y+\sqrt{3}x=-\sqrt{3},3x^{2}+4y^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3y+\sqrt{3}x=-\sqrt{3}
Solve 3y+\sqrt{3}x=-\sqrt{3} for y by isolating y on the left hand side of the equal sign.
3y=\left(-\sqrt{3}\right)x-\sqrt{3}
Subtract \sqrt{3}x from both sides of the equation.
y=\left(-\frac{\sqrt{3}}{3}\right)x-\frac{\sqrt{3}}{3}
Divide both sides by 3.
3x^{2}+4\left(\left(-\frac{\sqrt{3}}{3}\right)x-\frac{\sqrt{3}}{3}\right)^{2}=12
Substitute \left(-\frac{\sqrt{3}}{3}\right)x-\frac{\sqrt{3}}{3} for y in the other equation, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}x^{2}+2\left(-\frac{\sqrt{3}}{3}\right)\left(-\frac{\sqrt{3}}{3}\right)x+\left(-\frac{\sqrt{3}}{3}\right)^{2}\right)=12
Square \left(-\frac{\sqrt{3}}{3}\right)x-\frac{\sqrt{3}}{3}.
3x^{2}+4\left(-\frac{\sqrt{3}}{3}\right)^{2}x^{2}+8\left(-\frac{\sqrt{3}}{3}\right)^{2}x+4\left(-\frac{\sqrt{3}}{3}\right)^{2}=12
Multiply 4 times \left(-\frac{\sqrt{3}}{3}\right)^{2}x^{2}+2\left(-\frac{\sqrt{3}}{3}\right)\left(-\frac{\sqrt{3}}{3}\right)x+\left(-\frac{\sqrt{3}}{3}\right)^{2}.
\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)x^{2}+8\left(-\frac{\sqrt{3}}{3}\right)^{2}x+4\left(-\frac{\sqrt{3}}{3}\right)^{2}=12
Add 3x^{2} to 4\left(-\frac{\sqrt{3}}{3}\right)^{2}x^{2}.
\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)x^{2}+8\left(-\frac{\sqrt{3}}{3}\right)^{2}x+4\left(-\frac{\sqrt{3}}{3}\right)^{2}-12=0
Subtract 12 from both sides of the equation.
x=\frac{-8\left(-\frac{\sqrt{3}}{3}\right)^{2}±\sqrt{\left(8\left(-\frac{\sqrt{3}}{3}\right)^{2}\right)^{2}-4\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)\left(-\frac{32}{3}\right)}}{2\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4\left(-\frac{\sqrt{3}}{3}\right)^{2} for a, 4\times 2\left(-\frac{\sqrt{3}}{3}\right)\left(-\frac{\sqrt{3}}{3}\right) for b, and -\frac{32}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8\left(-\frac{\sqrt{3}}{3}\right)^{2}±\sqrt{\frac{64}{9}-4\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)\left(-\frac{32}{3}\right)}}{2\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
Square 4\times 2\left(-\frac{\sqrt{3}}{3}\right)\left(-\frac{\sqrt{3}}{3}\right).
x=\frac{-8\left(-\frac{\sqrt{3}}{3}\right)^{2}±\sqrt{\frac{64}{9}-\frac{52}{3}\left(-\frac{32}{3}\right)}}{2\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
Multiply -4 times 3+4\left(-\frac{\sqrt{3}}{3}\right)^{2}.
x=\frac{-8\left(-\frac{\sqrt{3}}{3}\right)^{2}±\sqrt{\frac{64+1664}{9}}}{2\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
Multiply -\frac{52}{3} times -\frac{32}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-8\left(-\frac{\sqrt{3}}{3}\right)^{2}±\sqrt{192}}{2\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
Add \frac{64}{9} to \frac{1664}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-8\left(-\frac{\sqrt{3}}{3}\right)^{2}±8\sqrt{3}}{2\left(4\left(-\frac{\sqrt{3}}{3}\right)^{2}+3\right)}
Take the square root of 192.
x=\frac{-\frac{8}{3}±8\sqrt{3}}{\frac{26}{3}}
Multiply 2 times 3+4\left(-\frac{\sqrt{3}}{3}\right)^{2}.
x=\frac{8\sqrt{3}-\frac{8}{3}}{\frac{26}{3}}
Now solve the equation x=\frac{-\frac{8}{3}±8\sqrt{3}}{\frac{26}{3}} when ± is plus. Add -\frac{8}{3} to 8\sqrt{3}.
x=\frac{12\sqrt{3}-4}{13}
Divide 8\sqrt{3}-\frac{8}{3} by \frac{26}{3} by multiplying 8\sqrt{3}-\frac{8}{3} by the reciprocal of \frac{26}{3}.
x=\frac{-8\sqrt{3}-\frac{8}{3}}{\frac{26}{3}}
Now solve the equation x=\frac{-\frac{8}{3}±8\sqrt{3}}{\frac{26}{3}} when ± is minus. Subtract 8\sqrt{3} from -\frac{8}{3}.
x=\frac{-12\sqrt{3}-4}{13}
Divide -\frac{8}{3}-8\sqrt{3} by \frac{26}{3} by multiplying -\frac{8}{3}-8\sqrt{3} by the reciprocal of \frac{26}{3}.
y=\left(-\frac{\sqrt{3}}{3}\right)\times \frac{12\sqrt{3}-4}{13}-\frac{\sqrt{3}}{3}
There are two solutions for x: \frac{12\sqrt{3}-4}{13} and \frac{-4-12\sqrt{3}}{13}. Substitute \frac{12\sqrt{3}-4}{13} for x in the equation y=\left(-\frac{\sqrt{3}}{3}\right)x-\frac{\sqrt{3}}{3} to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{\sqrt{3}}{3}\right)\times \frac{-12\sqrt{3}-4}{13}-\frac{\sqrt{3}}{3}
Now substitute \frac{-4-12\sqrt{3}}{13} for x in the equation y=\left(-\frac{\sqrt{3}}{3}\right)x-\frac{\sqrt{3}}{3} and solve to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{\sqrt{3}}{3}\right)\times \frac{12\sqrt{3}-4}{13}-\frac{\sqrt{3}}{3},x=\frac{12\sqrt{3}-4}{13}\text{ or }y=\left(-\frac{\sqrt{3}}{3}\right)\times \frac{-12\sqrt{3}-4}{13}-\frac{\sqrt{3}}{3},x=\frac{-12\sqrt{3}-4}{13}
The system is now solved.