Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+4y^{2}=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
x-my=-1
Consider the second equation. Subtract my from both sides.
x+\left(-m\right)y=-1,4y^{2}+3x^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+\left(-m\right)y=-1
Solve x+\left(-m\right)y=-1 for x by isolating x on the left hand side of the equal sign.
x=my-1
Subtract \left(-m\right)y from both sides of the equation.
4y^{2}+3\left(my-1\right)^{2}=12
Substitute my-1 for x in the other equation, 4y^{2}+3x^{2}=12.
4y^{2}+3\left(m^{2}y^{2}+\left(-2m\right)y+1\right)=12
Square my-1.
4y^{2}+3m^{2}y^{2}+\left(-6m\right)y+3=12
Multiply 3 times m^{2}y^{2}+\left(-2m\right)y+1.
\left(3m^{2}+4\right)y^{2}+\left(-6m\right)y+3=12
Add 4y^{2} to 3m^{2}y^{2}.
\left(3m^{2}+4\right)y^{2}+\left(-6m\right)y-9=0
Subtract 12 from both sides of the equation.
y=\frac{-\left(-6m\right)±\sqrt{\left(-6m\right)^{2}-4\left(3m^{2}+4\right)\left(-9\right)}}{2\left(3m^{2}+4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4+3m^{2} for a, 3\left(-1\right)\times 2m for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6m\right)±\sqrt{36m^{2}-4\left(3m^{2}+4\right)\left(-9\right)}}{2\left(3m^{2}+4\right)}
Square 3\left(-1\right)\times 2m.
y=\frac{-\left(-6m\right)±\sqrt{36m^{2}+\left(-12m^{2}-16\right)\left(-9\right)}}{2\left(3m^{2}+4\right)}
Multiply -4 times 4+3m^{2}.
y=\frac{-\left(-6m\right)±\sqrt{36m^{2}+108m^{2}+144}}{2\left(3m^{2}+4\right)}
Multiply -16-12m^{2} times -9.
y=\frac{-\left(-6m\right)±\sqrt{144m^{2}+144}}{2\left(3m^{2}+4\right)}
Add 36m^{2} to 144+108m^{2}.
y=\frac{-\left(-6m\right)±12\sqrt{m^{2}+1}}{2\left(3m^{2}+4\right)}
Take the square root of 144+144m^{2}.
y=\frac{6m±12\sqrt{m^{2}+1}}{6m^{2}+8}
Multiply 2 times 4+3m^{2}.
y=\frac{12\sqrt{m^{2}+1}+6m}{6m^{2}+8}
Now solve the equation y=\frac{6m±12\sqrt{m^{2}+1}}{6m^{2}+8} when ± is plus. Add 6m to 12\sqrt{1+m^{2}}.
y=\frac{3\left(2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}
Divide 6m+12\sqrt{1+m^{2}} by 8+6m^{2}.
y=\frac{-12\sqrt{m^{2}+1}+6m}{6m^{2}+8}
Now solve the equation y=\frac{6m±12\sqrt{m^{2}+1}}{6m^{2}+8} when ± is minus. Subtract 12\sqrt{1+m^{2}} from 6m.
y=\frac{3\left(-2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}
Divide 6m-12\sqrt{1+m^{2}} by 8+6m^{2}.
x=m\times \frac{3\left(2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}-1
There are two solutions for y: \frac{3\left(m+2\sqrt{1+m^{2}}\right)}{4+3m^{2}} and \frac{3\left(m-2\sqrt{1+m^{2}}\right)}{4+3m^{2}}. Substitute \frac{3\left(m+2\sqrt{1+m^{2}}\right)}{4+3m^{2}} for y in the equation x=my-1 to find the corresponding solution for x that satisfies both equations.
x=\frac{3\left(2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}m-1
Multiply m times \frac{3\left(m+2\sqrt{1+m^{2}}\right)}{4+3m^{2}}.
x=-1+\frac{3\left(2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}m
Add m\times \frac{3\left(m+2\sqrt{1+m^{2}}\right)}{4+3m^{2}} to -1.
x=m\times \frac{3\left(-2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}-1
Now substitute \frac{3\left(m-2\sqrt{1+m^{2}}\right)}{4+3m^{2}} for y in the equation x=my-1 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{3\left(-2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}m-1
Multiply m times \frac{3\left(m-2\sqrt{1+m^{2}}\right)}{4+3m^{2}}.
x=-1+\frac{3\left(-2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}m
Add m\times \frac{3\left(m-2\sqrt{1+m^{2}}\right)}{4+3m^{2}} to -1.
x=-1+\frac{3\left(2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}m,y=\frac{3\left(2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}\text{ or }x=-1+\frac{3\left(-2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}m,y=\frac{3\left(-2\sqrt{m^{2}+1}+m\right)}{3m^{2}+4}
The system is now solved.