Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2y^{2}=4
Consider the first equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
y=kx-k
Consider the second equation. Use the distributive property to multiply k by x-1.
x^{2}+2\left(kx-k\right)^{2}=4
Substitute kx-k for y in the other equation, x^{2}+2y^{2}=4.
x^{2}+2\left(k^{2}x^{2}+2\left(-k\right)kx+\left(-k\right)^{2}\right)=4
Square kx-k.
x^{2}+2k^{2}x^{2}+4\left(-k\right)kx+2\left(-k\right)^{2}=4
Multiply 2 times k^{2}x^{2}+2\left(-k\right)kx+\left(-k\right)^{2}.
\left(2k^{2}+1\right)x^{2}+4\left(-k\right)kx+2\left(-k\right)^{2}=4
Add x^{2} to 2k^{2}x^{2}.
\left(2k^{2}+1\right)x^{2}+4\left(-k\right)kx+2\left(-k\right)^{2}-4=0
Subtract 4 from both sides of the equation.
x=\frac{-4\left(-k\right)k±\sqrt{\left(4\left(-k\right)k\right)^{2}-4\left(2k^{2}+1\right)\left(2k^{2}-4\right)}}{2\left(2k^{2}+1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+2k^{2} for a, 2\times 2k\left(-k\right) for b, and 2k^{2}-4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4\left(-k\right)k±\sqrt{16k^{4}-4\left(2k^{2}+1\right)\left(2k^{2}-4\right)}}{2\left(2k^{2}+1\right)}
Square 2\times 2k\left(-k\right).
x=\frac{-4\left(-k\right)k±\sqrt{16k^{4}+\left(-8k^{2}-4\right)\left(2k^{2}-4\right)}}{2\left(2k^{2}+1\right)}
Multiply -4 times 1+2k^{2}.
x=\frac{-4\left(-k\right)k±\sqrt{16k^{4}+16+24k^{2}-16k^{4}}}{2\left(2k^{2}+1\right)}
Multiply -4-8k^{2} times 2k^{2}-4.
x=\frac{-4\left(-k\right)k±\sqrt{24k^{2}+16}}{2\left(2k^{2}+1\right)}
Add 16k^{4} to 16+24k^{2}-16k^{4}.
x=\frac{-4\left(-k\right)k±2\sqrt{6k^{2}+4}}{2\left(2k^{2}+1\right)}
Take the square root of 24k^{2}+16.
x=\frac{4k^{2}±2\sqrt{6k^{2}+4}}{4k^{2}+2}
Multiply 2 times 1+2k^{2}.
x=\frac{4k^{2}+2\sqrt{6k^{2}+4}}{4k^{2}+2}
Now solve the equation x=\frac{4k^{2}±2\sqrt{6k^{2}+4}}{4k^{2}+2} when ± is plus. Add 4k^{2} to 2\sqrt{6k^{2}+4}.
x=\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{3k^{2}+2}\right)}{2k^{2}+1}
Divide 4k^{2}+2\sqrt{6k^{2}+4} by 2+4k^{2}.
x=\frac{4k^{2}-2\sqrt{6k^{2}+4}}{4k^{2}+2}
Now solve the equation x=\frac{4k^{2}±2\sqrt{6k^{2}+4}}{4k^{2}+2} when ± is minus. Subtract 2\sqrt{6k^{2}+4} from 4k^{2}.
x=\frac{\sqrt{2}\left(\sqrt{2}k^{2}-\sqrt{3k^{2}+2}\right)}{2k^{2}+1}
Divide 4k^{2}-2\sqrt{6k^{2}+4} by 2+4k^{2}.
y=k\times \frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{3k^{2}+2}\right)}{2k^{2}+1}-k
There are two solutions for x: \frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{3k^{2}+2}\right)}{1+2k^{2}} and \frac{\sqrt{2}\left(\sqrt{2}k^{2}-\sqrt{3k^{2}+2}\right)}{1+2k^{2}}. Substitute \frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{3k^{2}+2}\right)}{1+2k^{2}} for x in the equation y=kx-k to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{3k^{2}+2}\right)}{2k^{2}+1}k-k
Multiply k times \frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{3k^{2}+2}\right)}{1+2k^{2}}.
y=k\times \frac{\sqrt{2}\left(\sqrt{2}k^{2}-\sqrt{3k^{2}+2}\right)}{2k^{2}+1}-k
Now substitute \frac{\sqrt{2}\left(\sqrt{2}k^{2}-\sqrt{3k^{2}+2}\right)}{1+2k^{2}} for x in the equation y=kx-k and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{2}\left(\sqrt{2}k^{2}-\sqrt{3k^{2}+2}\right)}{2k^{2}+1}k-k
Multiply k times \frac{\sqrt{2}\left(\sqrt{2}k^{2}-\sqrt{3k^{2}+2}\right)}{1+2k^{2}}.
y=\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{3k^{2}+2}\right)}{2k^{2}+1}k-k,x=\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{3k^{2}+2}\right)}{2k^{2}+1}\text{ or }y=\frac{\sqrt{2}\left(\sqrt{2}k^{2}-\sqrt{3k^{2}+2}\right)}{2k^{2}+1}k-k,x=\frac{\sqrt{2}\left(\sqrt{2}k^{2}-\sqrt{3k^{2}+2}\right)}{2k^{2}+1}
The system is now solved.