Solve for x, y (complex solution)
x=\frac{4+\sqrt{2}i}{3}\approx 1.333333333+0.471404521i\text{, }y=\frac{-\sqrt{2}i+2}{3}\approx 0.666666667-0.471404521i
x=\frac{-\sqrt{2}i+4}{3}\approx 1.333333333-0.471404521i\text{, }y=\frac{2+\sqrt{2}i}{3}\approx 0.666666667+0.471404521i
Graph
Share
Copied to clipboard
x^{2}+2y^{2}=2
Consider the first equation. Multiply both sides of the equation by 2.
x+y=2
Solve x+y=2 for x by isolating x on the left hand side of the equal sign.
x=-y+2
Subtract y from both sides of the equation.
2y^{2}+\left(-y+2\right)^{2}=2
Substitute -y+2 for x in the other equation, 2y^{2}+x^{2}=2.
2y^{2}+y^{2}-4y+4=2
Square -y+2.
3y^{2}-4y+4=2
Add 2y^{2} to y^{2}.
3y^{2}-4y+2=0
Subtract 2 from both sides of the equation.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\times 2}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2+1\left(-1\right)^{2} for a, 1\times 2\left(-1\right)\times 2 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 3\times 2}}{2\times 3}
Square 1\times 2\left(-1\right)\times 2.
y=\frac{-\left(-4\right)±\sqrt{16-12\times 2}}{2\times 3}
Multiply -4 times 2+1\left(-1\right)^{2}.
y=\frac{-\left(-4\right)±\sqrt{16-24}}{2\times 3}
Multiply -12 times 2.
y=\frac{-\left(-4\right)±\sqrt{-8}}{2\times 3}
Add 16 to -24.
y=\frac{-\left(-4\right)±2\sqrt{2}i}{2\times 3}
Take the square root of -8.
y=\frac{4±2\sqrt{2}i}{2\times 3}
The opposite of 1\times 2\left(-1\right)\times 2 is 4.
y=\frac{4±2\sqrt{2}i}{6}
Multiply 2 times 2+1\left(-1\right)^{2}.
y=\frac{4+2\sqrt{2}i}{6}
Now solve the equation y=\frac{4±2\sqrt{2}i}{6} when ± is plus. Add 4 to 2i\sqrt{2}.
y=\frac{2+\sqrt{2}i}{3}
Divide 4+2i\sqrt{2} by 6.
y=\frac{-2\sqrt{2}i+4}{6}
Now solve the equation y=\frac{4±2\sqrt{2}i}{6} when ± is minus. Subtract 2i\sqrt{2} from 4.
y=\frac{-\sqrt{2}i+2}{3}
Divide 4-2i\sqrt{2} by 6.
x=-\frac{2+\sqrt{2}i}{3}+2
There are two solutions for y: \frac{2+i\sqrt{2}}{3} and \frac{2-i\sqrt{2}}{3}. Substitute \frac{2+i\sqrt{2}}{3} for y in the equation x=-y+2 to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{2}i+2}{3}+2
Now substitute \frac{2-i\sqrt{2}}{3} for y in the equation x=-y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{2+\sqrt{2}i}{3}+2,y=\frac{2+\sqrt{2}i}{3}\text{ or }x=-\frac{-\sqrt{2}i+2}{3}+2,y=\frac{-\sqrt{2}i+2}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}