Solve for x, y
x=12
y=8
Graph
Share
Copied to clipboard
4\left(x+y\right)+5\left(x-y\right)=100
Consider the first equation. Multiply both sides of the equation by 20, the least common multiple of 5,4.
4x+4y+5\left(x-y\right)=100
Use the distributive property to multiply 4 by x+y.
4x+4y+5x-5y=100
Use the distributive property to multiply 5 by x-y.
9x+4y-5y=100
Combine 4x and 5x to get 9x.
9x-y=100
Combine 4y and -5y to get -y.
5\left(x+y\right)+4\left(x-y\right)=4\left(5\times 5+4\right)
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 4,5.
5x+5y+4\left(x-y\right)=4\left(5\times 5+4\right)
Use the distributive property to multiply 5 by x+y.
5x+5y+4x-4y=4\left(5\times 5+4\right)
Use the distributive property to multiply 4 by x-y.
9x+5y-4y=4\left(5\times 5+4\right)
Combine 5x and 4x to get 9x.
9x+y=4\left(5\times 5+4\right)
Combine 5y and -4y to get y.
9x+y=4\left(25+4\right)
Multiply 5 and 5 to get 25.
9x+y=4\times 29
Add 25 and 4 to get 29.
9x+y=116
Multiply 4 and 29 to get 116.
9x-y=100,9x+y=116
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9x-y=100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
9x=y+100
Add y to both sides of the equation.
x=\frac{1}{9}\left(y+100\right)
Divide both sides by 9.
x=\frac{1}{9}y+\frac{100}{9}
Multiply \frac{1}{9} times y+100.
9\left(\frac{1}{9}y+\frac{100}{9}\right)+y=116
Substitute \frac{100+y}{9} for x in the other equation, 9x+y=116.
y+100+y=116
Multiply 9 times \frac{100+y}{9}.
2y+100=116
Add y to y.
2y=16
Subtract 100 from both sides of the equation.
y=8
Divide both sides by 2.
x=\frac{1}{9}\times 8+\frac{100}{9}
Substitute 8 for y in x=\frac{1}{9}y+\frac{100}{9}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{8+100}{9}
Multiply \frac{1}{9} times 8.
x=12
Add \frac{100}{9} to \frac{8}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=12,y=8
The system is now solved.
4\left(x+y\right)+5\left(x-y\right)=100
Consider the first equation. Multiply both sides of the equation by 20, the least common multiple of 5,4.
4x+4y+5\left(x-y\right)=100
Use the distributive property to multiply 4 by x+y.
4x+4y+5x-5y=100
Use the distributive property to multiply 5 by x-y.
9x+4y-5y=100
Combine 4x and 5x to get 9x.
9x-y=100
Combine 4y and -5y to get -y.
5\left(x+y\right)+4\left(x-y\right)=4\left(5\times 5+4\right)
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 4,5.
5x+5y+4\left(x-y\right)=4\left(5\times 5+4\right)
Use the distributive property to multiply 5 by x+y.
5x+5y+4x-4y=4\left(5\times 5+4\right)
Use the distributive property to multiply 4 by x-y.
9x+5y-4y=4\left(5\times 5+4\right)
Combine 5x and 4x to get 9x.
9x+y=4\left(5\times 5+4\right)
Combine 5y and -4y to get y.
9x+y=4\left(25+4\right)
Multiply 5 and 5 to get 25.
9x+y=4\times 29
Add 25 and 4 to get 29.
9x+y=116
Multiply 4 and 29 to get 116.
9x-y=100,9x+y=116
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&-1\\9&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\116\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&-1\\9&1\end{matrix}\right))\left(\begin{matrix}9&-1\\9&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-1\\9&1\end{matrix}\right))\left(\begin{matrix}100\\116\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&-1\\9&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-1\\9&1\end{matrix}\right))\left(\begin{matrix}100\\116\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-1\\9&1\end{matrix}\right))\left(\begin{matrix}100\\116\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-\left(-9\right)}&-\frac{-1}{9-\left(-9\right)}\\-\frac{9}{9-\left(-9\right)}&\frac{9}{9-\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}100\\116\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{18}&\frac{1}{18}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}100\\116\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{18}\times 100+\frac{1}{18}\times 116\\-\frac{1}{2}\times 100+\frac{1}{2}\times 116\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
Do the arithmetic.
x=12,y=8
Extract the matrix elements x and y.
4\left(x+y\right)+5\left(x-y\right)=100
Consider the first equation. Multiply both sides of the equation by 20, the least common multiple of 5,4.
4x+4y+5\left(x-y\right)=100
Use the distributive property to multiply 4 by x+y.
4x+4y+5x-5y=100
Use the distributive property to multiply 5 by x-y.
9x+4y-5y=100
Combine 4x and 5x to get 9x.
9x-y=100
Combine 4y and -5y to get -y.
5\left(x+y\right)+4\left(x-y\right)=4\left(5\times 5+4\right)
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 4,5.
5x+5y+4\left(x-y\right)=4\left(5\times 5+4\right)
Use the distributive property to multiply 5 by x+y.
5x+5y+4x-4y=4\left(5\times 5+4\right)
Use the distributive property to multiply 4 by x-y.
9x+5y-4y=4\left(5\times 5+4\right)
Combine 5x and 4x to get 9x.
9x+y=4\left(5\times 5+4\right)
Combine 5y and -4y to get y.
9x+y=4\left(25+4\right)
Multiply 5 and 5 to get 25.
9x+y=4\times 29
Add 25 and 4 to get 29.
9x+y=116
Multiply 4 and 29 to get 116.
9x-y=100,9x+y=116
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9x-9x-y-y=100-116
Subtract 9x+y=116 from 9x-y=100 by subtracting like terms on each side of the equal sign.
-y-y=100-116
Add 9x to -9x. Terms 9x and -9x cancel out, leaving an equation with only one variable that can be solved.
-2y=100-116
Add -y to -y.
-2y=-16
Add 100 to -116.
y=8
Divide both sides by -2.
9x+8=116
Substitute 8 for y in 9x+y=116. Because the resulting equation contains only one variable, you can solve for x directly.
9x=108
Subtract 8 from both sides of the equation.
x=12
Divide both sides by 9.
x=12,y=8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}