Solve for x, y
x = \frac{5096}{51} = 99\frac{47}{51} \approx 99.921568627
y = \frac{415}{17} = 24\frac{7}{17} \approx 24.411764706
Graph
Share
Copied to clipboard
9\left(x+8\right)-8\left(y+16\right)=648
Consider the first equation. Multiply both sides of the equation by 72, the least common multiple of 8,9.
9x+72-8\left(y+16\right)=648
Use the distributive property to multiply 9 by x+8.
9x+72-8y-128=648
Use the distributive property to multiply -8 by y+16.
9x-56-8y=648
Subtract 128 from 72 to get -56.
9x-8y=648+56
Add 56 to both sides.
9x-8y=704
Add 648 and 56 to get 704.
8\left(x+y\right)=17\left(x-y\right)-289
Consider the second equation. Multiply both sides of the equation by 136, the least common multiple of 17,8.
8x+8y=17\left(x-y\right)-289
Use the distributive property to multiply 8 by x+y.
8x+8y=17x-17y-289
Use the distributive property to multiply 17 by x-y.
8x+8y-17x=-17y-289
Subtract 17x from both sides.
-9x+8y=-17y-289
Combine 8x and -17x to get -9x.
-9x+8y+17y=-289
Add 17y to both sides.
-9x+25y=-289
Combine 8y and 17y to get 25y.
9x-8y=704,-9x+25y=-289
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9x-8y=704
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
9x=8y+704
Add 8y to both sides of the equation.
x=\frac{1}{9}\left(8y+704\right)
Divide both sides by 9.
x=\frac{8}{9}y+\frac{704}{9}
Multiply \frac{1}{9} times 704+8y.
-9\left(\frac{8}{9}y+\frac{704}{9}\right)+25y=-289
Substitute \frac{704+8y}{9} for x in the other equation, -9x+25y=-289.
-8y-704+25y=-289
Multiply -9 times \frac{704+8y}{9}.
17y-704=-289
Add -8y to 25y.
17y=415
Add 704 to both sides of the equation.
y=\frac{415}{17}
Divide both sides by 17.
x=\frac{8}{9}\times \frac{415}{17}+\frac{704}{9}
Substitute \frac{415}{17} for y in x=\frac{8}{9}y+\frac{704}{9}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{3320}{153}+\frac{704}{9}
Multiply \frac{8}{9} times \frac{415}{17} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{5096}{51}
Add \frac{704}{9} to \frac{3320}{153} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{5096}{51},y=\frac{415}{17}
The system is now solved.
9\left(x+8\right)-8\left(y+16\right)=648
Consider the first equation. Multiply both sides of the equation by 72, the least common multiple of 8,9.
9x+72-8\left(y+16\right)=648
Use the distributive property to multiply 9 by x+8.
9x+72-8y-128=648
Use the distributive property to multiply -8 by y+16.
9x-56-8y=648
Subtract 128 from 72 to get -56.
9x-8y=648+56
Add 56 to both sides.
9x-8y=704
Add 648 and 56 to get 704.
8\left(x+y\right)=17\left(x-y\right)-289
Consider the second equation. Multiply both sides of the equation by 136, the least common multiple of 17,8.
8x+8y=17\left(x-y\right)-289
Use the distributive property to multiply 8 by x+y.
8x+8y=17x-17y-289
Use the distributive property to multiply 17 by x-y.
8x+8y-17x=-17y-289
Subtract 17x from both sides.
-9x+8y=-17y-289
Combine 8x and -17x to get -9x.
-9x+8y+17y=-289
Add 17y to both sides.
-9x+25y=-289
Combine 8y and 17y to get 25y.
9x-8y=704,-9x+25y=-289
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&-8\\-9&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}704\\-289\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&-8\\-9&25\end{matrix}\right))\left(\begin{matrix}9&-8\\-9&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-8\\-9&25\end{matrix}\right))\left(\begin{matrix}704\\-289\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&-8\\-9&25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-8\\-9&25\end{matrix}\right))\left(\begin{matrix}704\\-289\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-8\\-9&25\end{matrix}\right))\left(\begin{matrix}704\\-289\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{9\times 25-\left(-8\left(-9\right)\right)}&-\frac{-8}{9\times 25-\left(-8\left(-9\right)\right)}\\-\frac{-9}{9\times 25-\left(-8\left(-9\right)\right)}&\frac{9}{9\times 25-\left(-8\left(-9\right)\right)}\end{matrix}\right)\left(\begin{matrix}704\\-289\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{153}&\frac{8}{153}\\\frac{1}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}704\\-289\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{153}\times 704+\frac{8}{153}\left(-289\right)\\\frac{1}{17}\times 704+\frac{1}{17}\left(-289\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5096}{51}\\\frac{415}{17}\end{matrix}\right)
Do the arithmetic.
x=\frac{5096}{51},y=\frac{415}{17}
Extract the matrix elements x and y.
9\left(x+8\right)-8\left(y+16\right)=648
Consider the first equation. Multiply both sides of the equation by 72, the least common multiple of 8,9.
9x+72-8\left(y+16\right)=648
Use the distributive property to multiply 9 by x+8.
9x+72-8y-128=648
Use the distributive property to multiply -8 by y+16.
9x-56-8y=648
Subtract 128 from 72 to get -56.
9x-8y=648+56
Add 56 to both sides.
9x-8y=704
Add 648 and 56 to get 704.
8\left(x+y\right)=17\left(x-y\right)-289
Consider the second equation. Multiply both sides of the equation by 136, the least common multiple of 17,8.
8x+8y=17\left(x-y\right)-289
Use the distributive property to multiply 8 by x+y.
8x+8y=17x-17y-289
Use the distributive property to multiply 17 by x-y.
8x+8y-17x=-17y-289
Subtract 17x from both sides.
-9x+8y=-17y-289
Combine 8x and -17x to get -9x.
-9x+8y+17y=-289
Add 17y to both sides.
-9x+25y=-289
Combine 8y and 17y to get 25y.
9x-8y=704,-9x+25y=-289
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-9\times 9x-9\left(-8\right)y=-9\times 704,9\left(-9\right)x+9\times 25y=9\left(-289\right)
To make 9x and -9x equal, multiply all terms on each side of the first equation by -9 and all terms on each side of the second by 9.
-81x+72y=-6336,-81x+225y=-2601
Simplify.
-81x+81x+72y-225y=-6336+2601
Subtract -81x+225y=-2601 from -81x+72y=-6336 by subtracting like terms on each side of the equal sign.
72y-225y=-6336+2601
Add -81x to 81x. Terms -81x and 81x cancel out, leaving an equation with only one variable that can be solved.
-153y=-6336+2601
Add 72y to -225y.
-153y=-3735
Add -6336 to 2601.
y=\frac{415}{17}
Divide both sides by -153.
-9x+25\times \frac{415}{17}=-289
Substitute \frac{415}{17} for y in -9x+25y=-289. Because the resulting equation contains only one variable, you can solve for x directly.
-9x+\frac{10375}{17}=-289
Multiply 25 times \frac{415}{17}.
-9x=-\frac{15288}{17}
Subtract \frac{10375}{17} from both sides of the equation.
x=\frac{5096}{51}
Divide both sides by -9.
x=\frac{5096}{51},y=\frac{415}{17}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}