Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x+1\right)=2\left(y+2\right)
Consider the first equation. Variable y cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 3\left(y+2\right), the least common multiple of y+2,3.
3x+3=2\left(y+2\right)
Use the distributive property to multiply 3 by x+1.
3x+3=2y+4
Use the distributive property to multiply 2 by y+2.
3x+3-2y=4
Subtract 2y from both sides.
3x-2y=4-3
Subtract 3 from both sides.
3x-2y=1
Subtract 3 from 4 to get 1.
3\left(x-2\right)=y-1
Consider the second equation. Variable y cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 3\left(y-1\right), the least common multiple of y-1,3.
3x-6=y-1
Use the distributive property to multiply 3 by x-2.
3x-6-y=-1
Subtract y from both sides.
3x-y=-1+6
Add 6 to both sides.
3x-y=5
Add -1 and 6 to get 5.
3x-2y=1,3x-y=5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-2y=1
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=2y+1
Add 2y to both sides of the equation.
x=\frac{1}{3}\left(2y+1\right)
Divide both sides by 3.
x=\frac{2}{3}y+\frac{1}{3}
Multiply \frac{1}{3} times 2y+1.
3\left(\frac{2}{3}y+\frac{1}{3}\right)-y=5
Substitute \frac{2y+1}{3} for x in the other equation, 3x-y=5.
2y+1-y=5
Multiply 3 times \frac{2y+1}{3}.
y+1=5
Add 2y to -y.
y=4
Subtract 1 from both sides of the equation.
x=\frac{2}{3}\times 4+\frac{1}{3}
Substitute 4 for y in x=\frac{2}{3}y+\frac{1}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{8+1}{3}
Multiply \frac{2}{3} times 4.
x=3
Add \frac{1}{3} to \frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3,y=4
The system is now solved.
3\left(x+1\right)=2\left(y+2\right)
Consider the first equation. Variable y cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 3\left(y+2\right), the least common multiple of y+2,3.
3x+3=2\left(y+2\right)
Use the distributive property to multiply 3 by x+1.
3x+3=2y+4
Use the distributive property to multiply 2 by y+2.
3x+3-2y=4
Subtract 2y from both sides.
3x-2y=4-3
Subtract 3 from both sides.
3x-2y=1
Subtract 3 from 4 to get 1.
3\left(x-2\right)=y-1
Consider the second equation. Variable y cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 3\left(y-1\right), the least common multiple of y-1,3.
3x-6=y-1
Use the distributive property to multiply 3 by x-2.
3x-6-y=-1
Subtract y from both sides.
3x-y=-1+6
Add 6 to both sides.
3x-y=5
Add -1 and 6 to get 5.
3x-2y=1,3x-y=5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-2\times 3\right)}&-\frac{-2}{3\left(-1\right)-\left(-2\times 3\right)}\\-\frac{3}{3\left(-1\right)-\left(-2\times 3\right)}&\frac{3}{3\left(-1\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}+\frac{2}{3}\times 5\\-1+5\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Do the arithmetic.
x=3,y=4
Extract the matrix elements x and y.
3\left(x+1\right)=2\left(y+2\right)
Consider the first equation. Variable y cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 3\left(y+2\right), the least common multiple of y+2,3.
3x+3=2\left(y+2\right)
Use the distributive property to multiply 3 by x+1.
3x+3=2y+4
Use the distributive property to multiply 2 by y+2.
3x+3-2y=4
Subtract 2y from both sides.
3x-2y=4-3
Subtract 3 from both sides.
3x-2y=1
Subtract 3 from 4 to get 1.
3\left(x-2\right)=y-1
Consider the second equation. Variable y cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 3\left(y-1\right), the least common multiple of y-1,3.
3x-6=y-1
Use the distributive property to multiply 3 by x-2.
3x-6-y=-1
Subtract y from both sides.
3x-y=-1+6
Add 6 to both sides.
3x-y=5
Add -1 and 6 to get 5.
3x-2y=1,3x-y=5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x-3x-2y+y=1-5
Subtract 3x-y=5 from 3x-2y=1 by subtracting like terms on each side of the equal sign.
-2y+y=1-5
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
-y=1-5
Add -2y to y.
-y=-4
Add 1 to -5.
y=4
Divide both sides by -1.
3x-4=5
Substitute 4 for y in 3x-y=5. Because the resulting equation contains only one variable, you can solve for x directly.
3x=9
Add 4 to both sides of the equation.
x=3
Divide both sides by 3.
x=3,y=4
The system is now solved.