Skip to main content
Solve for k, L
Tick mark Image

Similar Problems from Web Search

Share

k=100L
Consider the first equation. Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by L.
5\times 100L+50L=110
Substitute 100L for k in the other equation, 5k+50L=110.
500L+50L=110
Multiply 5 times 100L.
550L=110
Add 500L to 50L.
L=\frac{1}{5}
Divide both sides by 550.
k=100\times \frac{1}{5}
Substitute \frac{1}{5} for L in k=100L. Because the resulting equation contains only one variable, you can solve for k directly.
k=20
Multiply 100 times \frac{1}{5}.
k=20,L=\frac{1}{5}
The system is now solved.
k=100L
Consider the first equation. Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by L.
k-100L=0
Subtract 100L from both sides.
k-100L=0,5k+50L=110
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-100\\5&50\end{matrix}\right)\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}0\\110\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-100\\5&50\end{matrix}\right))\left(\begin{matrix}1&-100\\5&50\end{matrix}\right)\left(\begin{matrix}k\\L\end{matrix}\right)=inverse(\left(\begin{matrix}1&-100\\5&50\end{matrix}\right))\left(\begin{matrix}0\\110\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-100\\5&50\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\L\end{matrix}\right)=inverse(\left(\begin{matrix}1&-100\\5&50\end{matrix}\right))\left(\begin{matrix}0\\110\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\L\end{matrix}\right)=inverse(\left(\begin{matrix}1&-100\\5&50\end{matrix}\right))\left(\begin{matrix}0\\110\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}\frac{50}{50-\left(-100\times 5\right)}&-\frac{-100}{50-\left(-100\times 5\right)}\\-\frac{5}{50-\left(-100\times 5\right)}&\frac{1}{50-\left(-100\times 5\right)}\end{matrix}\right)\left(\begin{matrix}0\\110\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{1}{110}&\frac{1}{550}\end{matrix}\right)\left(\begin{matrix}0\\110\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 110\\\frac{1}{550}\times 110\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}20\\\frac{1}{5}\end{matrix}\right)
Do the arithmetic.
k=20,L=\frac{1}{5}
Extract the matrix elements k and L.
k=100L
Consider the first equation. Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by L.
k-100L=0
Subtract 100L from both sides.
k-100L=0,5k+50L=110
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5k+5\left(-100\right)L=0,5k+50L=110
To make k and 5k equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 1.
5k-500L=0,5k+50L=110
Simplify.
5k-5k-500L-50L=-110
Subtract 5k+50L=110 from 5k-500L=0 by subtracting like terms on each side of the equal sign.
-500L-50L=-110
Add 5k to -5k. Terms 5k and -5k cancel out, leaving an equation with only one variable that can be solved.
-550L=-110
Add -500L to -50L.
L=\frac{1}{5}
Divide both sides by -550.
5k+50\times \frac{1}{5}=110
Substitute \frac{1}{5} for L in 5k+50L=110. Because the resulting equation contains only one variable, you can solve for k directly.
5k+10=110
Multiply 50 times \frac{1}{5}.
5k=100
Subtract 10 from both sides of the equation.
k=20
Divide both sides by 5.
k=20,L=\frac{1}{5}
The system is now solved.