Evaluate
\frac{12\left(\sin(1)\right)^{2}\cos(x)\left(\sin(x)\right)^{3}+12\left(\cos(1)\right)^{2}\sin(x)\left(\cos(x)\right)^{3}-2x^{2x+1}+3\sin(2)\left(\sin(2x)\right)^{2}}{2\left(\sin(1)\sin(x)+\cos(1)\cos(x)\right)^{2}}
Differentiate w.r.t. x
\frac{-2\sin(1)\ln(x)\sin(x)\left(x^{x+1}\right)^{2}-2\cos(1)\ln(x)\cos(x)\left(x^{x+1}\right)^{2}+2\sin(1-x)\left(x^{x+1}\right)^{2}-2\sin(1)\sin(x)\left(x^{x+1}\right)^{2}-2\cos(1)\cos(x)\left(x^{x+1}\right)^{2}+18\cos(1)x\left(\sin(1)\sin(x)\right)^{2}\left(\cos(x)\right)^{3}-18\sin(1)x\left(\cos(1)\cos(x)\right)^{2}\left(\sin(x)\right)^{3}+6x\left(\cos(x)\right)^{2}\left(\sin(1)\sin(x)\right)^{3}-6x\left(\sin(x)\right)^{2}\left(\cos(1)\cos(x)\right)^{3}+18\sin(1)\left(\cos(1)\right)^{2}x\sin(x)\left(\cos(x)\right)^{4}-18\cos(1)\left(\sin(1)\right)^{2}x\cos(x)\left(\sin(x)\right)^{4}+6\left(\cos(1)\right)^{3}x\left(\cos(x)\right)^{5}-6\left(\sin(1)\right)^{3}x\left(\sin(x)\right)^{5}-\sin(1)\sin(x)x^{2x+1}-\cos(1)\cos(x)x^{2x+1}}{x\left(\sin(1)\sin(x)+\cos(1)\cos(x)\right)^{3}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}